

Submarine islands of benthic biodiversity within and adjacent to an offshore transitional area

<u>Cherisse Du Preez</u>, Kelly Swan, & Tammy Norgard

Marine Spatial Ecology & Analysis Section, Fisheries and Oceans Science Division

International Symposium: Understanding Changes in Transitional Areas of the Pacific Ocean 24th April 2018

Seamount 101

Underwater volcanic mountain

- "A large, isolated elevation characteristically of conical form" (Bouma 1990)
- Active or exit volcanic activity
- Exceed 1000 m above the surrounding seafloor (US Board of Geographic Names 1981)

Seamount EBSAs

Offshore oases of life & a hotspot of biological diversity

- high productivity
- eddies & cones concentrate local productivity while pulling in productivity from elsewhere, acts as a barrier & traps prey
- ets
- boosts productivity throughout the food web**
 - feeding grounds for seabirds, whales, pelagic fish, vertical migration of productivity to the seafloor of the seamount **extents in 4-D
- hard substrate and complex 3-D structures → deep-sea corals, sponges, rockfish, etc.
- refuge for a subset of species found on the continental slope

Seamounts protection

Convention on Biological Diversity

140,000 km² or 420,000 km³ Canada

Seamounts protection

19 known seamounts,27 Predicted seamounts:

- Kitchingman and Lai (2004) (purple circles),
- 2. Manson (2009) (beige polygons),
- 3. Kim and Wessel (2011) (green squares),
- Yesson et al. (2011)
 (orange triangles for seamounts and yellow circles for knolls)
- Imposed rule: >1000 m elevation over 20 km (Yesson et al. 2011)

Seamounts protection

- 46: a network of 40 seamounts (south) + 6 seamounts (north) within Canada's EEZ
- All known Canadian seamounts
 - none in the Canadian Arctic or Atlantic
- Early 2018: No bottomcontact seamount fishing

DFO (in press)

Seamounts (un)knowns Canada FISHERIES AND OCEANS

Knowledge gap

- Baseline information for individual seamounts:
 - multibeam bathymetry maps
 - visual surveys
 - species composition
 - influence of the "seamount effect" over space and time

Difficult tasked: creating managements and monitoring plans for the soon-to-be 43 protected offshore seamounts

Seamounts classification Canada

A network of diverse seamounts (DFO, in press)

- contains 5 different classes of seamounts
 - based on depth, proximity, & oxygen alone (Clark et al. 2007)

A global seamount classification to aid the scientific design of marine protected area networks Malcolm R. Clark a,*, Les Watling b, Ashley A. Rowden a, John M. Guinotte c, Craig R. Smith b *National Institute of Water & Atmospheric Research, Wellington, New Zealand

b University of Hawaii at Manoa, Honolulu, USA

No.	Seamount	Feature class	In Ban et al. 2016	Summit depth (m)	Est. base depth (m)	Est. elevation (m)	Est. temp. at- summit (°C)	Est. [O2] at- summit (mL/L)	Lat.	Long.	Proximity to nearest seamount (km)	Proximity to base of the continental slope (km)	Seamount class (Clark et al. 2011)	Location predicted by:	Associated with:
							Named sear	mounts within	the Offshor	re Pacific Are	a of Interest				
1	Chelan Seamount	Seamount	Υ	1459	3050	1591	2.4	0.6	49.75	-131.53	28	44	2	KL, M, KW, Y	Chelan Seamount (chain)
2	Dellwood Seamount	Seamount	Y	300	2659	2359	2.9	0.5	50.73	-130.9	19	on slope	3	KL, M, KW, Y	Dellwood Seamount Chain
3	Dellwood South Seamount	Seamount	Υ	1218	2629	1411	2.6	0.5	50.6	-130.72	16	on slope	2	KL, M, KW, Y	Dellwood Seamount Chain
4	Endeavor Seamount	Seamount	N 2	1707	2900	1193	2.1	1.2	48.27	-129.08	13	on slope	1	M, Y	na
5	Explorer Seamount	Seamount	Υ	830	3300	2470	3.6	0.4	49.07	-130.93	14	17	2	KL, M, KW, Y	Explorer Seamount (complex)
6	Heck Seamount	Seamount	Y	1100	2700	1600	3.2	0.4	48.42	-129.47	18	on slope	2	KL, M, KW, Y	Heck Seamount (chain)
7	Heckle Seamount	Seamount	N ²	1400	2800	1400	2.5	0.6	48.47	-130.13	16	on slope	2	KL, M, KW, Y	Heckle Seamount Chain
8	Oglala Seamount (West)	Seamount	N ²	1600	3069	1469	2.2	0.9	50.38	-132.17	41	91	2	KL, M, KW, Y	na
0	Onlala	Seamount	v	1272	2000	1629 1200	26	0.5	50.2	-121 47	22	41	2	M KW V	22

Exploring the AOI

Seamounts classification Canada

1st: all were confirmed as seamounts

Transitional zone

Ground-truthed: 5 classes of seamounts, with <u>oxygen</u> <u>concentration as the prominent variable</u> dividing the network

Surveyed seamounts within and adjacent to the offshore transitional area

- Bifurcation (split) of the North
 Pacific current into the
 Alaska current & the
 California current
- mobile region of variable currents (south in winter; north in summer)

(DFO, in press)

R.E. Thomson, 2003

Transitional zone

Naturally occurring oxygen minimum zone (Line P data)

- AOI seamounts with 6 highest [O2]
- All "Class one" seamounts

Transitional zone

Preliminary analyses of the benthic surveys:

- at the same depths, benthic communities vary between seamounts of different classes based on [O₂]
- mechanism unknown
 - grazing of recruits?
 - [DSi]?

Appears the bifurcation zone plays a role in diversifying seamount benthic communities within the network

Future research

Long-term variability in the Oxygen Minimum Zone in the North East Pacific and potential impacts on seamount communities

Tetjana Ross, Cherisse Du Preez, Debby lanson, Tammy Norgard and Marie Robert

- Climate change
- OMZ is becoming more O₂ depleted, while expanding shallower and deeper
- Threat to regional diversity among seamounts?

Future expeditions

Offshore Seamounts

- July 2018
- E/V Nautilus with ROV Hercules
- Major objectives:
 - survey 3 seamounts: Bowie, Dellwood,
 & Explorer
 - establish long-term monitoring sites

Seamount summary

- Oases of life
- Prominent features in Canada's Pacific offshore
- Important to Canadian MPAs
- Fisheries and Oceans Canada: using a seamount classification system to aid with management & monitoring planning
- Regional diversity among seamounts shows correlation with [O₂] and the Bifurcation Zone
- Ongoing research:
 - ID diversity among seamounts & representative seamounts
 - Set up long-term monitoring sites
 - Predict potential impacts of climate change (expansion of OMZ)

