The recent warming of intermediate waters at the
Eastern North Atlantic. Insights from a monthly
hydrographical timeseries at the Bay of Biscay

César Gonzalez-Pola, A. Lavin, J.L. Lopez-Jurado, C. Rodriguez, R.
Somawvilla, M. Ruiz-Villareal, G. Diaz del Rio and R. Sanchez

.

Spanish Institute of
Oceanography

Effects of climate change
on the world's oceans

ICESCIEM
=—O M O

2008 May 19-23, Gijon, Spain




Introduction. Warming in the Eastern North Atlantic

Fact: Upper layers of
the North Atlantic are
warming.
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" Recent strong warm anomalies

Hollyday et. al (2008) Upp AT > 0.1°C from 2000
Johnson & Gruber (2007) SPMW 0.7°C 1993-2003

Thierry et. al (2008) SPWW 1.4°C 1996-2003
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The Radiales Project. The Santander Standard Section

Radiales Project:
Systematic sampling
(hydrographical and
biological in 8 standard
sections around
Spanish waters).

http://www.seriestemporales-ieo.net/

Monthly sampling in the
Galician-Cantabrian

e Santander Section. 7 stations, 1 in area.
the shelf break, two over the deep
ocean (2400 and 2800)

e Small ship, sampling limited to

1000m depth (1500 from 2006).

High frequency timeseries of
central water properties.




Sustained warming at all depths
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From early 90 s all
water masses have
warmed at rates

0.015-0.030 ©C/yr.

(0.020 ©C/yr on
average. 0.30°C in
15 years)

Different water masses (different
sources and pathways) and different
types of warming.

Possible to look to the interannual
variability and strong shifts (climatic
signals).
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Water masses in the Bay of Biscay

East North Atlantic Central Water (ENACW). 6,~27.1-2 Pres — 350 dbar
Lower bound of ENACW (Sal Min). ¢,~27.2-3 Pres — 500 dbar
Mediterranean Water (MW). c,~27.3-27.6 Pres — 1000 dbar (core)

/S Biscay Area MW present a smooth
14 | ' slow-varying structure a
the eastern Bay of Biscay
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Quantifying water masses changes

It is possible to split changes at a fixed depth approximately in
two main components (Bindoff & McDougall 1994, Arbic &
Owens, 2001) :

1. Thermohaline properties variation at fixed isopycnal levels.
Pure Warming//Freshening. [air-sea fluxes variability]

2. Variations due to vertical displacement of isopycnal levels. Pure
Heave. [renewal rates, circulation changes]

Approximate expression: 2
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Heating at isopycnal levels Heating due to
“isopycnal change”. iIsopycnal level
Modification of the displacement “heave”.
thermohaline structure of ‘Same water types’ but
the water masses different proportions.
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Isopycnal sinking (heave). St7
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Thickness of the layers (heave). St7
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© between isopycnals (isopycnal change), same for salinity!
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Overall View, 6S temporal evolution 2005 onwards
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Interpretation of the changes. ENACW & Sal. Min.

ENACW is modal water formed
by local winter deep convection.

Winter 2005 anomalous
atmospheric pattern

NCEP/NCAR Reanalysis Sea Level
Pressure (mb) anomaly.
Dec04-March05.
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Interpretation of the changes. ENACW & Sal. Min.

Cells for air-sea fluxes calc.

NCEP/NCAR Reanalysis
http://www.cdc.noaa.gov

Winter [and yearly] air
temperature always above
average since early 90’s.

No trend in air-sea heat
exchange.

AErnnual P-E wva Fred

From early 90’s to 2004
ENACW modal water progressively more lighter (warm) 27.2 = 27.1

In 2005:

Local high heat loss + strong precipitation deficit. 27.1 = 27.2++
(warmer+saltier).

An isolated cooling + mixing event after years of heave transmitted
downwards the warm anomaly (as isopycnal warming, i.e. within
salt-increase).




Western Mediterranean deep water formation: Parallelism.

MCEP grid and sslected ewils for DIACK and WHDW

. Western Mediterranean (Deep Water
source). Highest heat flux loss anomaly

on record (Lopez-Jurado et. al. 2005).
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Tracking climatic signals at MW in the Bay of Biscay?

»MW have a clear pathway until the Galician Bank and less clear
iInto the Bay of Biscay. MW at Biscay could take 15-25 months to
reach Santander directly from the MW source, or could mainly

come from the main reservoir.

Circulation Moyenne 1000 dbara.
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Tracking climatic signals at MW Iin the Bay of Biscay?

»MW have a clear pathway until the Galician Bank and less clear
iInto the Bay of Biscay. MW at Biscay could take 15-25 months to
reach Santander directly from the MW source, or could mainly
come from the main reservoir.

»MW changes during 90 s until 2005 did not come from mixing
from above (i.e were advected).

»MW forms at the Gulf of Cadiz (MOW+ENACW, 1:3, Baringer &
Price 1997). Santander MW core contains about 40% of original.

»90’s to 2004 (at least) MOW warmed continuously (Millot et.al
2006), as ENACW did.

»2005 onwards, MOW cooled (Lafuente et. al. 2007). Upper
ENACW cooled while core and lower ENACW warmed (Santander
results).
... suggest that the 2005 cooling event may have produced a
signature at Santander MW.



Tracking climatic signals at MW in the Bay of Biscay?

No signs of cooling at
MW until 2008. ol A A e
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Conclusions

» Central waters down to 1000 m in the southern Bay of Biscay
have suffered strong and progressive modifications from early
90’s, with the effect of a generalized warming at all levels at
rates from 0.015 ©C yr-1 to 0.030°C yr-1.

» Central waters variability are well correlated with local air-sea
fluxes. (We could blame global warming for this ‘local
warming’ as far as we blame global warming for decades of
high temperatures).

» Winter 2005 provided a strong local cooling. The effect was
the isopycnal warming of deep levels fairly stable until then
(at most warming by heave). Western Mediterranean
experimented something similar.

» MW at the Bay of Biscay continues a progressive warming and
salinity increase (density compensating) without a tight
response to short-term climatic signals.






Overall View

8 S diagram Santander Section
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Quantifying water masses changes
Water masses analysis: Two natural components:

1. Effective modification of the thermohaline structure of the
water masses (6S diagram alteration).

F
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Related to heat and
freshwater fluxes at the
formation areas.

water formed is ‘different’




Quantifying water masses changes

Water masses analysis: Two natural components:

2. Vertical displacement of isopycnal levels without changes in

Vﬁl]ter masses properties.

g Related to variations in
renewal rates or circulation
changes.

‘Same water types’ but
different proportions.




Salinity between isobars (st7)

200//300 — -0.002 + 0.001 yr_1
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