Trends in the North Atlantic Carbon Sink

Overview

- N. Atlantic carbon cycle variability, data
- N. Atlantic regional model
- Basin-scale flux trend, 1992-2006
- Mechanisms driving flux change

Temperature, DIC, pCO₂

1983-2005, merged Hydrostation S and BATS

Understanding observed trends in ΔpCO_2

Schuster and Watson, 2007

Summary for mid-1990's to early 2000's (Schuster and Watson, 2007)

- Regions 1-4
 are declining in
 CO₂ uptake
- Region 5, 6
 are neutral or
 increasing CO₂
 flux

Modeling the North Atlantic carbon cycle

A North Atlantic regional model...

- MITgcm, 20S-80N
- 0.5 x 0.5 horizontal, 23 vertical
- Parameterizations
 - GM-Redi (isopycnal mixing)
 - KPP (mixed layer)
- Forcing:
 - daily NCEP
 - SST restored to Reynolds et al 2002
- 90 year physical spinup
- 10 year biogeochemical spinup
- 15 year (1992-2006) run

Sea Surface Temperature

Mixed layer depth at Bermuda

Model (red) captures mixing reasonably well

Ecosystem and carbon cycle

- Dutkiewicz et al. (2005) ecosystem
- 2 phytoplankton, 1 zooplankton class, dissolved and particulate detritus
- Explicit silica and iron
- Coupled carbon and oxygen cycles

pCO₂ seasonal cycle at Bermuda, Data and model

pCO₂ seasonal cycle at Bermuda, Data and model

Low frequency (>1 year) pCO₂ variability at Bermuda

Low frequency (>1 year) pCO₂ variability at Bermuda

Variability and trends across the North Atlantic

1992-2006

Basin-scale CO₂ flux variability

compared to Takahashi et al. 2002 in 1995

EOF1 pCO₂ and CO₂ flux

PC1 of pCO₂ (blue) and flux (red) r = 0.87

What drives the modeled trend?

Consider difference of 4yr means (2003-2006) – (1992-1995)

Flux trend vs. Observations

- Consistent with available data in West, East, South
- Not consistent in North

Ocean pCO₂ trend (2003-2006) – (1992-1995)

30 uatm

0 uatm

pCO₂ and component trends

(2003-2006) - (1992-1995)

Summary: pCO₂ Trends

- Model illustrates Northwest/Southeast asymmetry in flux trend
 - In West, East & South: consistent with data
- Due to combined effect of SST, DIC and ALK on ocean pCO₂
 - SST change consistent with data, including intensification in Northwest (ICES, 2006)
 - What drives DIC change?

Conclusions

Surface ocean carbon cycle trends, North Atlantic, 1992-2006

- Model captures pCO₂ trend, mechanisms at BATS
- pCO₂ increase spatially variable, max 30 μatm
 - pCO₂-SST, pCO₂-ALK, pCO₂-DIC trend ±200 μatm, but largely counteract each other
 - Vertical mixing, biology, freshwater and horizontal transport all contribute to pCO₂-DIC trend
 - Vertical, biology, freshwater changes consistent with data
- Observed ∆pCO₂ trends can be partially explained while the basin-wide sink increases

Observed Temperature Trend

ICES, 2006

NEWFOUNDLAND SHELF

ICES, 2006

ΔpCO_2 trend (2003-2006) – (1992-1995)

20 uatm

-20 uatm

June chlorophyll, STD 98-05

log10(mg Chl/m³)

