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The ocean’s biological pump strips nutrients out of the surface
waters and exports them into the thermocline and deep waters. If
there were no return path of nutrients from deep waters, the
biological pump would eventually deplete the surface waters and
thermocline of nutrients; surface biological productivity would
plummet. Here we make use of the combined distributions of
silicic acid and nitrate to trace the main nutrient return path
from deep waters by upwelling in the Southern Ocean' and
subsequent entrainment into subantarctic mode water. We
show that the subantarctic mode water, which spreads through-
out the entire Southern Hemisphere® and North Atlantic
Ocean’, is the main source of nutrients for the thermocline. We
also find that an additional return path exists in the northwest
corner of the Pacific Ocean, where enhanced vertical mixing,
perhaps driven by tides®, brings abyssal nutrients to the surface
and supplies them to the thermocline of the North Pacific. Our
analysis has important implications for our understanding of
large-scale controls on the nature and magnitude of low-latitude
biological productivity and its sensitivity to climate change.
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Data & Methods

Okhotsk Sea
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Period

Oceanographic data

Mezooplankton

Criteria

1951-2004

WOD2001, A-line, IMA
Nutrients- temperature- salinity

Odate collection
Neoclanaus plumchrus

Oyashio >5 degree C
Transition 5-15 degree C
at 100m depth Kawai (1972)
bottom depth >500m



Variation in PO, (monthly normalized value)
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5-year running mean of annual mean PO,
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5-year running mean of annual mean PO,
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Relationship PO, between surface and mid layer

Trend: Inverse between two layers

=P Suggest decreasing of water exchange between two layers.



Variations in Mixed layer depth

Oyashio Transition
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We did not observed significant trend of MLD in the both waters. However, it was
reported that the shoaling trend of MLD in western subarctic and Alaskan Gyre
(Joyce & Dunworth-Baker 2003, Freeland et al. 1998, 2005).
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Shoaling trend of MLD in the Alaskan Gyre
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These are upstream of the Oyashio and Transition waters. The trends of PO,
In the Oyashio and Transition waters may be related to the change of MLD
In upstream waters.



Bidecadal-scale oscillation



Bidecadal-scale oscillation
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Oscillation component (anomaly from trend) of PO, had significant negative
relationship with index of 18.6-year diurnal tidal strength in the both layers.



Possible processes of the bidecadal-scale oscillation in PO,

Osafune & Yasuda Process 1
(2006)



Summary: possible process of variation in PO,
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Neocalanus plumchrus

Predominant mesozooplankton
Spring-summer species
Feed on phytoplankton and micorozooplankton

N. plumchriis




biomass (g m?)

Variaton in N. plumchrus biomass in spring-summer

N. Plumchrus biomass had significant positive relationship with PO,

Oyashio Transition
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The relationships suggests the change in PO, supply affect N. Plumchrus
productivity via change the primary productively.
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