THE EFFECT OF OCEAN ACIDIFICATION AND TEMPERATURE ON THE FERTILISATION AND DEVELOPMENT OF THE OYSTER Saccostrea glomerata (GOULD 1850)

Laura Parker BSc, PhD Candidate

Supervisors Drs. Pauline Ross & Wayne O'Connor Ecology and Environment Research Group
University of Western Sydney
NSW Department of Primary Industries
Australia

PREVIOUS STUDIES: ADULTS

Reduced calcification in:

- Coccolithophores (80%)
 (Riebesell *et al.* 2000)
- Corals (25-30% some 54%) (Langdon *et al.* 2000; Leclercq *et al.* 2000)
- Foraminifera
 (Bijma et al. 1999)
- Pteropods
 (Orr et al. 2005)
- Bivalves (10-25%)
 (Gazeau *et al.* 2007)

PREVIOUS STUDIES: EGGS AND LARVAE

Reduced fertilisation of copepod eggs > 1000 ppm

(Kurihara et al. 2004)

High mortality of marine zooplankton passing through CO₂ rich plumes
 (Yamada and Ikeda 2004)

Doyle ABC News 2008

PREVIOUS STUDIES: SYNERGISTIC EFFECTS ON ADULTS

 Only one study has measured the synergistic effects of ocean acidification and temperature

- Reynaud *et al.* 2003:
- no reduction in calcification of scleractinian coral, Stylophora pistillata at elevated CO₂
- 50% reduction in calcification synergistic effect of CO₂ and temperature

Stylophora pistillata

MIA

To determine the synergistic effects of ocean acidification and temperature on the eggs and larvae of an ecologically and economically important oyster in Australian estuaries

OYSTER

Sydney rock oyster Saccostrea glomerata

- Ecologically and economically one of the most significant organisms in Australian estuaries
- Vital in food web and water quality
- 21.4 million € (32.8 million USD)
 per annum
- 95% of shell composed CaCO₃
 (aragonite and calcite)

Tucker 2003

Saccostrea glomerata

Four stages of development: Fertilisation D-veliger Umbonant Pediveliger

Time (days)

D-VELIGERS

Saccostrea glomerata

Four stages of development: Fertilisation D-veliger Umbonant Pediveliger

Time (days)

AYM9 TO HESES DY

To determine the synergistic effect of there will be at a didfication and temperature on:

- fertilisation of Saccostrea glomerata gametes
- development, growth and abnormality of D-veliger larvae
 - growth of umbonant and pediveliger larvae

FERTILISATION AND D-VELIGER: METHODS

FERTILISATION: RESULTS

Fertilisation decreased with increased pCO_2 (pCO_2 and temperature P < ***)

- 27 % reduction at elevated pCO₂ optimal temp (26 °C)
- Further 25 % reduction at elevated pCO₂ suboptimal temp (18 °C)

% DEVELOPMENT OF D-VELIGER

Development decreased with increased pCO_2 (pCO_2 x temperature P < ***)

% ABNORMALITY OF D-VELIGER

Figure 1.

Ambient 375 ppm

Figure 2.

Elevated 1000 ppm

% ABNORMALITY OF D-VELIGER

Abnormality increased with increased pCO_2 (pCO_2 x temperature P < ***)

- Abnormality in at ease ated
- 1009, 400 tirimat rtearting (26 VS)
- · Annotene text his a text
- 1000 suboptimal temp (18°C) abnormality

SHELL LENGTH OF D-VELIGER

Figure 1.

Ambient 375 ppm

Figure 2

Elevated 1000 ppm

SHELL LENGTH OF D-VELIGER

Shell length decreased with increased pCO_2 (pCO_2 x temperature P < **)

- Shell length greatest at 375 ppm and 26 °C
- Śħellengthμħ 51 ± 0.34 μm smaller in treatment vs.
- ១៣៧ម៉ោមក្សថ្មាប់ ទៅក្នុងខែនាះ at 1000 ppm and 18 °C (51 ± 0.40 µm)

UMBONANT: METHODS

Transfeereachine so devotech at the introduce treatme (913 (win 5 retained) mL)

EXPERIMENTAL DESIGN

UMBONANT: METHODS

Fee&krektyrmgkhilynækasulræketableCklaetagseros muelle(raj,rækakvtodvasluktstæmtæmteTatsitgjæmvitko)chrysis

Mean size before experiment

Mean size after experiment

UMBONANT RESULTS: SHELL LENGTH

Growth decreased with increased pCO_2 (pCO_2 x temperature P < ***)

■ **Growth** sestered 30e Cluced at lower temperatures and elevated pCO₂

PEDIVELIGER RESULTS: SHELL LENGTH

Growth decreased with increased pCO_2 (P < ***)

Beotethggoeatheat ællevated 260036han umbonant stage

SUMMARY OF RESULTS

Fertilisation \checkmark with increased pCO_2

Optimal temperature: 26 °C Suboptimal temperature: 18 °C

Development & growth \checkmark and abnormality T with increased $p\mathsf{CO}_2$

Optimal temperature: 26°C

Suboptimal temperature: 18 °C (ambient fertilisation)

30 °C (treatment fertilisation – lethal effects)

Growth with increased pCO₂
Optimal temperature: 30 °C
Suboptimal temperature: 18 °C

Growth with increased pCO₂
Optimal temperature: 26 - 30 °C
Suboptimal temperature: 18 °C

CONCLUDING STATEMENTS

- Ocean acidification and temperature had a significant effect on the fertilisation and embryonic development of S. glomerata.
- Sub-lethal and lethal effects, depending on the stage of development and length of exposure.
- Other bivalves in our estuaries may be similarly affected.
- S. glomerata has been selectively bred within Australia for fast growth and disease resistance.
- My current research is to determine whether these lines may be resistant to ocean acidification and temperature.

Flox 2008

THANK YOU

Acknowledgements:

Department of Primary Industries, Port Stephens, New South Wales (1); Dr Raymond Ritchie, University of Western Sydney (2); Dr Bronte Tilbrook CSIRO Tasmania (3)