Decadal changes in North Atlantic phytoplankton blooms

Stephanie Henson John Dunne, Jorge Sarmiento

Response of primary production to changing forcing

Reduced mixing + nutrient limitation -> lower PP

Reduced mixing + light limitation -> higher PP & earlier blooms

Doney, 2006

Response of primary production to changing forcing

Behrenfeld et al., 2006

In sub-tropics increasing stratification reflected in lower SeaWiFS NPP

Downward trend in NPP since 1999 - is this just normal interannual variability, a response to ENSO, or unprecedented change?

Regional Study - North Atlantic

- Regional response to changing physical forcing
- Set the 10-yr SeaWiFS record in longer-term context

• Fully prognostic physical-biogeochemical model (MOM4-TOPAZ, CORE forcing). No data assimilation. 1959-2004

Variability in **bloom timing** is important to:

Higher trophic levels

Export flux

Reflects changes in underlying physical forcing

Bloom timing from SeaWiFS

chl > 5% annual median, and stay elevated (Siegel et al., 2000; Henson et al., 2006)

An alternative measure of model skill

Interannual variability in bloom timing

Range in bloom timing

Number of weeks difference between earliest and latest bloom start (98-04)

'Inter-gyre' region may have either autumn or spring bloom

Chl response to changing MLD

Sub-polar: Chl increases when MLD shallows -> light limited Sub-tropical: Chl increases when MLD deepens -> nutrient

limited

Decadal variability in bloom timing

Sub-polar, no trend, but patterns of variability?

Sub-tropical, no trend

North Atlantic Oscillation correlated with sub-polar bloom timing

Sub-polar, later bloom start in positive NAO years

+ve NAO, more northerly storm track, deeper winter mixed layers in sub-polar region

Sub-tropical, no correlation

Variability in MLD drives bloom timing

Difference in winter modelled MLD between 3 latest, and 3 earliest, blooming years

Deeper mixed layer results in later spring bloom in subpolar region

Primary Production trend in SeaWiFS

Sub-polar region SeaWiFS NPP shows decreasing trend since 1998

NPP estimated from CbPM, Behrenfeld et al. (2005)

Primary Production decadal trend

NPP decrease in recent years consistent with decadal variability

Conclusions

- Bloom timing is a useful metric of model skill
- N. Atlantic split into 2 regions:
 - Sub-polar: bloom starts when ML shallows
 - Sub-tropical: bloom starts when ML deepens
- What controls the position of the front between the 2 regions interannually?
- No evidence of long-term trend in bloom timing
- Variability in sub-polar bloom timing correlated with NAO -> mechanism is variability in MLD
- Be careful interpreting variability in the 10-year SeaWiFS record