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Presentation Outline

. Ocean seasonality’ (iIntense but predictable’)

2. Zooeplankioniseasenal timing mechanisms +

Envirenmentalf controls/cues
Metheds; fer guantifing zoeplankion: phenelegy
Examples of timing| varalility:

- NE Paclific

- NWWPacIfic

- North Sea & NE Atlantic

- NW Atlantic
- Mediterranean

. Conclusions & shared themes



Ocean Weather:
Strong| seasonality at mid-high latitudes

by Fisheries
ns canada
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Winter days (left) are short, dim, cold, and often stormy.

Summer days (right) are long, sometimes bright & calm.



Seasonal weather drives large annual cycles off ocean
physics & lewer trophic level bioclegy

i1 - Annual amplitudes ofiten
2-5x langer than
Interannuall differences
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timing alse matter) prey-predaror
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IHow! do zooplankton respond to seasonall stress?
Annual peroaicity; makes: stress preaictaple. Wired: aadapiranorns; can evole
(LU can: also) 1all: aisastrous/y i the annual iorcing: cHanges)

Resporise Mechanism
[Dermancy enset & Physiological ‘switch’,
duration Phenotype

(Egg or pre-aduli)

SeasenaltMigration Behavioral switch

Reproeductive timing Maturation + Behavior

Developmental rate Physiological

Date-dependent Population dynamics
survivership

Generation length Physiology + Phenotype
(#/year)




What amoeng-year comparisens might we want?
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Desirable Data Characteristics:

e Taxonomically-resolved (because timing
parameters differ species-by-species)

e Good within-year temporal resolution
(because some changes happen quickly)



Abundance or Biomass
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Potential Timing Indices:
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Plhenology OBsernations
(Various' Regiens)



1. Neocalanus piumenrdsin the NE Pacific
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Dominant copepod in Alaska Gyre &
tS deep marginall seas

Prolonged & deep dormancy. as €5
Mates, & spawns; at depin (ne feeding)

Briel growing seasen In surface: layer,
culminates In intense: spring hiemass
peak (Well-resplvedthy the Sta P
Weather-ship time: series)

—— NORPAC — SCOR WP2




Anl educational surprisel!

In the mid-1990s, we resumed
Intensive: sping: Ssampling of the
Alaska Gyire.

Mid 19805 data Oled US 10
expect peak copepod PIomass Iin
June

I Mid=1990s, June; wWe: caught few
(analelderly) A plumehrys.

WiIHY.77
Not gone, but EARLY

Retrespective analysis
documented showed a timingl range Mackas, Goldblatt & Lewis 1997
from May: te July.
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We subsequently looked more broadly:
(and for moere years) in the NE Pacific
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Sea Surface Temperature Degree Days

170 160 150 140 130 120 110
N, plumehrys iming vares withrlatittde; but imterannualivaranility/ s
correlated acress regions (miadle)

Timing infall regiens shares similar temperature: dependence (rHght)

But the magnitude ofi the timing range, and difference in regression
petween oceanic and nearshore suggest that 1°C dependence may
alse be a proxy for stratification and/or survival rate.



2. Timing off copepod species groups in the N Pacific
(ODATE project: S. Chiba, K. Tadokoroe)

Spring Community

Spring dominants:
N. flemingeri,
N. cristatus

8 B 76 5 4 3

1960 19685 1975 1980 1985 'I'EI;E
Sp-Sum Community

Spring-Summer:

N. plumchrus,
Eucalanus bunagil,
Metridia pacifica,
Pseudocalanus spp.

-240-230 -220-210

Withinr seasonal species greups, peak timing (and abundance) cevary,
Withi corresponding seasonal temperature/stratification anemalies

Between seasonal species groups, no sustained symnchrony: of
phenologic variability



3. North Sea CPR' surveys

Time Series Temperature dependence Time Series Temperature dependence
2
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Plots for individual taxa from supplementary data
provided by Edwards and Richardson (2004)
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Temperature dependencervares Widely: amene| Species:

i

= By taxa, strongest for meroplankion and dineflagellates: (lefit)
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4. North Sea: Helgoland Roads Time Series

100000

Small copepods
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30+ years, excellent temporal and taxonomic resolution

‘Start’, ‘Middle’, ‘End’, and ‘Length-of-season’ estimated from
cumulative abundance percentiles for ~100 taxa (W. Greve)



IHelgoland Roads continuea:
Mid-season Date vs. Year & llemperature

Time Series Temperature dependence Time Series Temperature d
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Centropages typicus

-20 -1.0 0.0 1.0 2.0 . . -3 20 10 00 1.0 2.0 3.0
MAM Temp anomaly (°C}) MAM Temp anomaly (°C)

Correlations off temperature anemaly and phenophase are significant for
aboeut half the taxa.
/IS again usually (but not always) negative



IHelgoland Reads continued:
Temporal trend of ‘start’, ‘mid® and end” dates

Change of Mid-season Date, 1975-2006

WEIBZHEN

GATUS WEIBCHEN
WEIBZHEN

:
g
[0
T
i
=
g

Abeut a third of the taxa have shiited: earlier by >1 moenth
An additionall third are earlier by hall: a moenth
But 12% have shifted later by = 1 moenth



Temera longleombe
Time-aeries aeasonal cynle [deily imerpofsfon)

5. Plymouth -4
time series

Adapted the ‘cumulative e
percentile” method for a less e st oty
regular samplinglimtenval . /

Indices of ‘start”, ‘mid* and
‘end-of-season’ track
apuneance conteur plets

Interannual synchreny (CER
Vs Helgolandivs: L4) IS present
UL Weaker than i NE Pacific

L4'1s not yet leng enough to
guantify: trends in timing







Phenelogy: Summary

Zooplankten seasenal timing varation by, 1-2
moenthsiis common (C& Big for animals with 4-12
monthlife spanst)

Within-Species timing eften correlates with IF=C:
Warmer: UpPer ocean; -= eanier timing
(streng| link ter climate: varatien/trend)

BUt range of timing Varanility I1s larger than can
e explained by @10 effiects stage: duration.
Other modes and mechanisms must contrkhute:

Some of' these can and! do; counter the
Warmer = earlier” generalization



Complication #1: At the c ommllmr/ ievel, trends In Spec
gominance (rgnt) may: counter trends; in pPnenoiogy: or t
ndividual taxa that make up the community (Ieft)

Calanus Calanus Calanus Calanus
finmarchicus helgolandicus finmarchicus helgolandicus
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Complication #2. Seasonal dermancy.
IS an Important timing control, but
regulatien off entry: & exit Is complex

I NWEAtantic, duratien eii C.
fiAmarehicys dermancy is linked to
UppREr ocean 1°C in thelr grewing
season UM

No single envirenmental (T,
phoeteperied, chl a; ...) gives
consistent prediction of start o
end date.

Internal” contrel (Iipidireserve,
pielogicall clock) alse Importiant
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(C. Johnson et al. 2008)

Surface temperature (°C)



Complication #3. Streng seasonal
predation or competition may: select
against shared 1°C dependence in
the Baleanec Sea (Mille=Eranche)

Centropages typicus

5%
pp

When NAO swiing from: negative phase (moist,
cool) to pesitiver phase (dry, warm): In the late
1980s:
s Cenropages: ypieus hecame earier and
more abundant but O =M NAO(= @

abundance (ind m-3)

s Jiemora styliferaliecame: later and less

f Teimmora stylifera
abundani, While

e Salps (competitors) and jellyiish
(predators) increased, especially nearshore

(Malinero et al. 2005)
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Suggestions for future research:

ApplY: genemic/proteomic methoads to
study: ofi dermancy: onset/termination

iming misinfermation” and climate
change

Rele of diffierential suivivaliin contrelling
WiIthinryear phenelogy

IHOW, fast can! tining adaptatiens; evoelve?



Again, I you have a zeoplankten
time seres you are willing te
IRAcltde 1R thisF cemparisen, please
contact us.




