

International Symposium on the Effects of Climate Change on the World's Oceans

W1 Zooplankton and climate: response modes and linkages among regions, regimes, and trophic levels

Retrospective analysis of zooplankton decadal time series in the Mediterranean Sea using an automated imaging system

M.G. Mazzocchi¹, L. Stemmann², C. Garcia-Comas^{1,2}, M. Ribera d'Alcalà¹, S. Gasparini², F. Ibanez², S. Pesant², M. Picheral², G. Gorsky²

¹Stazione Zoologica Anton Dohrn, Napoli, Italy ²Laboratoire d'Oceanographie de Villefranche, CNRS/UPMC, Villefranche, France

Bay of Villefranche

Gulf of Naples

The comparison of the two time-series is based on re-analysis of samples using a digital imaging system

The Zooscan

- 12 parameters for the grey level and 7 for the position
- 10 parameters for size and 6 for shape
- ZooProcess and Plankton I dentifier softwares for image processing and identification

Comparison based on copepod abundance and size distribution

The Zooscan

COPEPODS: 96% recognition (17% contamination)

Automatic and Manual count comparison (MC time series)

Automatic and Manual count comparison (MC time series)

Why size?

- Aggregation criterion and scaling factor
- Simplifying approach for the whole community
- Complementary to the species-level approach
- Determinant of various rate processes
- Related to prey and predator interactions and energy flow

Indicators of the shape of the size spectra

Slope of the spectra

(Platt et Denman, 1977, 1978)

- Log-Log transformation
- Linear regression

Bias due to modes

Shannon index from the spectra

(Parson, 1969; Ruiz, 1994)

Shannon (H')

(1 size class = 1 species)

$$|H' = -\sum p_i \log_2 p_i|$$

Equitability, Piélou (J)

$$J = H'/\log_2 S$$

We chose this metric because of less bias due to the position of the modes

Villefranche - Long term changes (copepod abundances)

Villefranche - Long term changes (length spectra Shannon index)

Villefranche - Size diversity

Villefranche - Phenological changes

Villefranche - Phenological changes

Naples - Long term changes (copepod abundances)

About the automatic imaging devices

✓ Rescue of historical samples

✓ Sample treatment

SCOR WG 130

Automatic Visual Identification of Plankton

Remarks

- •In Villefranche, significant changes have occurred in the total abundance and average size of copepods. It seems that a shift occurred toward larger copepod size but this has not been explained yet (probably due to change in wind regime). Inter-annual changes in the phenology could reflect changes of species occurrences.
- Current analyses are focused on comparison of the long term changes of copepod size spectra in both time series; what changes in the community do they reflect? Are they synchron? Are they linked to regional or basin-scale changes?
- •Semiautomatic recognition of all large copepods to validate the datasets and test some hypotheses (e.g., the intrusion of offshore species in Villefranche).
- Utility and advantages of automatic imaging devices for the future of studies on zooplankton ecology (lab & *in situ*).