The role of fixed-point deep ocean observatories in a global observing system

Richard S. Lampitt, Kate E. Larkin, Sue E. Hartman, Maureen Pagnani,

Global Observing System

- 1. Satellite remote sensing
- 2. Ships (a) Research vessels(b) Voluntary Observing Ships
- 3. Drifters, gliders and buoys
- 4. Eulerian (fixed-point) observatories
 - (a) Shelf seas
 - *(b) Open ocean

Why are fixed-point deep ocean observatories important and relevant for a global ocean observing system?

Unique contributions/strengths of fixed time-series

Sustained, high frequency, in situ time-series

- Short-term variation and ecosystem dynamics
- Capture episodic events
- Long-term change and climatic trends

Multidisciplinary science: Vertical coverage

- Temperature
- Salinity
- Nutrients
- Chl-a
- CO₂
- Particle flux
- Currents

Real-Time Telemetry

Observatory sensors

Fluorescence

Nutrients

 CO_2

Water currents

CTD

Downward particle flux

Unique contributions/strengths of fixed time-series

- Mature technology: Fixed autonomous platform in remote/harsh environments (e.g. high latitude open ocean, strong currents, hydrothermal vents)
- Durability and Inexpensive: Prolonged measurements at high sampling rate without cables required

Key locations: Models for open ocean processes

Ocean productivity: contrasting regimes

(response to climate variability)

global carbon cycle processes and acidification

Ocean time-series data: NE Atlantic

pCO₂: Ocean as a perennial C sink in the NE Atlantic (PAP site)

Existing status and current global coverage of fixed-point deep ocean observatories

OceanSITES: A global network of fixed-point reference sites

- collect sustained timeseries of atmospheric, physical, biogeochemical, or ecosystem variables
- OceanSITES
 Taking the pulse of the global ocean
- •mooring or ship-board (min. monthly) (and cable or glider observations)
- Data philosophy: Share data freely and in real-time

OceanSITES is an official component of the global ocean observing system, part of the IOC/WMO coordination body JCOMM, and a pilot project of the Data Buoy Coordination Panel (DBCP).

Courtesy Uwe Send, SCRIPPS Institution of Oceanography

OceanSITES: Future vision

Core sites and set of sensors for global impact (to be decided)

Data on global ocean timeseries indicators will be available e.g.

- pH
- assembled heat and freshwater content timeseries
- eddy energy timeseries

Products will be developed and provided to a variety of users e.g.

- air-sea flux data for model validation
- 15m currents for validation of drifter and satellite current products
- sea surface salinities for remote sensing validation
- wave data (surface moorings) for wave products/validation
- column integrated chlorophyll estimates (remote sensing/model validation)

www.oceansites.org

Integrate and enhance 9 existing deep ocean (>1000 m) observatories

Integrated Data management

-Regional DAC's -Global GDAC

Real-time
Open access
QC data (data/metadata)
Interchangeable formats

SEADATANET
INSPIRE Directive
MyOcean

The future role of fixed-point observatories in a global observing system

Integration and Technological advancement

- Integrated science:
 Atmosphere to ocean interior,
 seafloor and subseafloor
- Regional multi-node
- Fixed and mobile assets:
 Temporal and Spatial context
- New Technology
 Sensors, Power, Telemetry
- Interactivity: Adaptive sampling

Pioneer Array: OOI

Current Seafloor Initiatives

Ocean Observatories Initiative (OOI)

- NE Pacific,
- The coastal boundary current regions,
- The high latitude of the Atlantic and Pacific

Courtesy of:

Dr. Holly Given, Director OOI

The North Atlantic

The Irminger Sea Global Node at 60°N, 39°W

Fixed and mobile assets to resolve mesoscale processes: collaboration with CIS European Time Series Site

Emerging Sensor Technology

Problems e.g. Biofouling

Instrument frame prior to Deployment in NE Atlantic

After 12 months at 45m depth NE Atlantic

Emerging sensor technology

Need more Biological and chemical sensor development to measure variables currently not sampled long-term:

- Deep oxygen consumption
- •pH
- Deep Zooplankton sampling
- Osmosamplers
- •Genomics (e.g. DNA chips, field genomics for diversity and function studies)

Emerging technology: In situ Oxygen Consumption

Sensor: In situ Oxygen Dynamics Auto-sampler: IODA6000

Testbed: ANTARES site, Ligurian Sea, Mediterranean

Direct measurements of O2 consumption in the mesopelagic and bathypelagic: Efficiency of the biological pump

LMGEM, Marseille, France (Christian Tamburini, Anne Robert, Dominique Lefèvre)

CPPM, Marseille, France (P. Payre, M. Billault, S. Beurthey & K. Arnaud)

Emerging technology: Ocean Acidity

Sensor: Adapted pH Spectrophotometric sensor

Testbed: ESTOC site (29°10'N, 15°30'W)

Autonomous sampler for long-term pH measurements at high precision and accuracy

ULPGC, Spain Melchor González Dávila J. Magdalena Santana-Casiano

Thank you