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Global Carbon Budget for 1980s and 90s Atmosphere

Fossif Fuel [590 + 767]
& Cement Land-Use Land Respiration
Volcanism ~ Emissions Change  sink NPP & Fires

Mission: Understand the role of the oceans in the global carbon cycle and its
evolution over time.



Global Carbon Budget for 1980s and 90s Atmosphere

Fossif Fuel [590 + 767]
& Cement Land-Use Land Respiration
Volcanism ~ Emissions Change  sink NPP & Fires

One approach is to evaluate changes in global carbon inventory over time.



CLIVAR/CO, Repeat Hydrograph
b‘eg R.A. Feely, C.L. Sabine, R?Wannirﬁhof, G.C. Jston, 9L. Bufi)ste},/M.
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Barringer, C.W. Mordy, J.-Z. Zhang, M.F. Lamb, D. Greeley, F.J. Millero,
and A.G. Dickson

To quantify decadal changes in the inventory and transport of heat, fresh water, carbon
dioxide (CO,), chlorofluorocarbon tracers and related parameters in the oceans.

Goal:

The sequence and timing of the CLIVAR/CO, Repeat Hydrography cruises have
been selected so that there is roughly a decade between them and the
WOCE/JGOFS global survey.

The U.S. CLIVAR/CO, Repeat Hydrography Program has completed 9 of
18 lines and is on schedule to complete global survey by 2012.

Approach:

Achievements:

Global map of planned
CLIVAR/CO, Repeat

Hydrography Program
hydrographic sections
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A second approach is to evaluate the net air-sea exchange of CO.,,.
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Goal: To quantify the daily to interannual variability in air-sea CO, fluxes and understand the
" mechanisms controlling these fluxes.

Make autonomous surface pCO, measurements using research and volunteer
observing ships (VOS) to get spatial coverage at seasonal time scales and using a
network of surface moorings to get high frequency temporal resolution.

Approach:

The VOS program has outfitted 7 ships and has a full data exchange policy
with 4 other ships. The moored pCO, program currently has 10 open
ocean systems deployed.

Achievements:




Concept: Use Multiple Platforms to Produce Seasonal CO, Flux Maps

Algorithm
development
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f(SST, color)
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In situ sampling
pCO,, SST, SSS

Co-located
satellite data

Apply algorithm to
regional SST&
color fields to
obtain seasonal
pCO,maps
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Takahashi climatological annual mean air-sea CO,, flux for reference year 1995
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Based on .94 million measurements since 1970 and
NCEP 41 year winds.
Global flux is 1.5 Pg C/yr

Takahashi et al., Deep Sea Res. II, 2002



Takahashi climatological annual mean air-sea CO, flux for reference year 2000
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Based on 2.791 million measurements since 1970 and
NCEP/DOE/AMIP |11 reanalysis.
Global flux is 1.22 Pg C/yr

Takahashi et al., Deep Sea Res. Il, submitted



Global Flux Map suggests an interannual variability of 0.18 Pg C
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Cimatology: Takahash et & 2002
Method: Llee et a, TREE, Park = a, 2006

Approach: 1. Improving regional relationships by incorporating additional
parameters (e.g. mixed layer depth, chlorophyll)
2. Improving regional relationships using ship-based and moored
pCO,,, observations



New results suggest a 30% larger interannual variability

Interannual variability Air-Sea (302 flux
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To know if this is real, we need to better understand the time and space
scales of variability in the ocean



PMEL Moored Autonomous pCO, (MAPCO,) system

initial design is from the MBARI drifters of Gernot Friedrich and Francisco Chavez

The Basics:

LiCor 820 NDIR | -
detector to measure |
air and water CO,, |

gas calibration —
traceable to WMO e
standards

Self contained
modular design to

Electronics
Package

“ﬁirr L CE R fit a range of buoys

daily satellite
Floating data transmission

Equilibrator =
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Float

The Equilibrator

to/from the
CO2 system/
Licor

Bubble type equilibrator that sits
directly in the surface seawater with a
recirculated headspace gas. Nominal
time of recirculation 10 minutes.

The equilibrator is made from a copper-
nickel alloy to prevent biofouling




Relating Underway Data to Moored Data

Atlantic Explorer pCD2 measurements around BTM (20km range rings) Ave rage d |ffe rence
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@y NOAA’sexisting pCO, moorings are designed to
oceansITEs — build on the OceanSITES reference flux sites

OceanSITES - meteorological
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Equatorial Pacific

ENSO variations: ~ 80-100 ppm Seasonal amplitude: ~20-30 ppm
Sub-seasonal variations: ~50-60 ppm Diurnal cycle: ~20-40 ppm

®CO2 in dry air at SST

xC02 on the equator at 125W, 140W, 170W
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Seasonal cycle in CO, is relatively small...only about half of what one would
expect from the magnitude of the seasonal temperature signal, but there is
significant higher frequency variability.
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¥CO02 in dry air at S5T

&00

OceanSITES - meteorological

STRATUS Mooring|.

Seasonal amp:
~70 ppm (?)

Sub-seasonal varlatlons ~30 ppm

Diurnal cycle: 2-8 ppm

Primarily watermass controlled.

xCO02 at 85W, 20S ~1500km off the coast of Chile
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Bermuda Test-bed
Mooring

Seasonal amp: ~120 ppm
| Sub-seasonal variations: ~20 ppm
{ Diurnal cycle: 2-9 ppm

OceanSITES - meteorological

W EOW W g 2071

Primarily temperature controlled
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¥CO02 at 85W, 205 -85km southeast off the coast of Bermuda
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Bermuda Testbed Mooring (64°W, 32°N)

—%—pCO2 of SW
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S
Q.
£
|_
7))
%)
©
§\
O
@)
x

w
\l
o

360 -

350

9/1/06 9/8/06 9/15/06 9/22/06 9/29/06
Time (date)




OceanSITES - meteorological

MOSEAN mooring
near Hawalii
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Seasonal amp.: ~60 ppm .
Sub-seasonal variations: ~15 ppm
Diurnal cycle: 3-8 ppm

Combined temperature and biological control
xCO2 at 158W, 22.5N near HOTS
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HALE-ALOHA Mooring (158°W, 23°N)
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¥CO02 in dry air at S5T

500

OceanSITES - meteorological

Station - Papa
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Seasonal amp.: ~40 ppm

Sub-seasonal variations: ~15 ppm

Diurnal cycle: none obvious

KC0O2 at 145W, 50N in the Gulf of Alaska
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Northwest Pacific Sites - KEO and JKEO

OceanSITES - meteorological

Diurnal cycle: 5-10 ppm

®C02 at 146E, 38N at JKEO ®CO2 at 145E, 32N at KEO
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Developing New Directions: Coastal Studies
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NDBC 46041
Cape Elizabeth

The WA site does not show a
strong regular diurnal signal in
the summer. Although there is
variability on time scales of 1-3
days. Most of this variability is
thought to be associated with
. : oy ) summer upwelling events, some
Location: 47.3°N, 124.7°W AR [ of which drove the surface water

Bottom Depth: 132m S . .
Distance from Shore: ~31km - A Y - C02 higher than atmospheric.

Distance from Shelf Break: ~2km

xC02 at 125W, 47N off the Washington Coast

®COZ in dry air at SST




Although the seasonal
temperature cycle is the dominate
control of the 200 ppm seasonal
CO, range, there is some CO,
variability on time scales of days to

with variations in temperature,
others are not suggesting that
biological or advective
mechanisms may also play a role
at these time scales.

Georgia
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Location: 31.4°N, 80.9°W

Bottom Depth: 18m
Distance from Shore: ~33km
Distance from Shelf Break: ~345km

The GA site does show a
clear diurnal signal in CO,
during the summer. The
CO, variations are generally
positively correlated with
the temperature variations,
but the magnitude of the
temperature changes is not
large enough to account for
all of the observed CO,
changes.



New Hampshire

The two dominant sub-
seasonal events in the NH
mooring are the very low CO,
values in the spring caused by
spring blooms and an
indication of very high CO,
values at the beginning of
winter likely caused by mixing
after the first major winter

Location: 43.0°N, 70.5°W

storm passed through the Bottom Depth:65m

area. AR b Distance from Shore: ~12km
\ _ ) Distance from Shelf Break: ~355km

®C02 in dry air at S5T
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®C02 in dry air at S5T

Kaneohe Bay, HI

Relatively enclosed
bay with significant
calcification. This
calcification keeps
the pCO, high.
Also see impacts of
storm events.
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Conclusions

We are using multiple approaches to assess the ocean sink for CO.,,.

. The different approaches provide information over different time scales
ranging from hours todecades.

. Moorings are the best mechanism for evaluating high frequency variability
from hours to years.

. All mooring locations examined to date have significant variability over a
range of time scales with unique interactions between the different forcings
that need further study.

. We are working to expand our mooring network in an effort to develop a
better understanding of the different scales and spatial patterns of
variability.

I welcome opportunities to collaborate with others to include a MAPCO,
system new platforms.



@y NOAA’sexisting pCO, moorings are designed to
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OceanSITES - meteorological
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Existing and planned pCO, moorings are designed
to build on the OceanSITES reference flux sites
and NDBC coastal moorings

OceanSITES - meteorological
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Thank You |




