

Model development for flood forecast improvement in the Netherlands

Martin Verlaan, Herman Gerritsen

with thanks to colleagues

Deepak Vatvani, Remco Plieger, Jan Noort, Ernst Schrama, Jacco Groeneweg and David Kerkhoven

Contents:

- The newly created Deltares
- Present NL flood forecasting system
- Considerations for a new system
- Water level model DCSMv6
- Calibration approach OpenDA
- Wave model SWAN_NorthSea
- Time schedule of Implementation / Operation

Deltares

Deltares: four institutes are pooling strengths

The Netherlands is built on "water and soft soil"

- WL | Delft Hydraulics
 - hydraulic engineering and integrated water management
- GeoDelft
 - geo-engineering
- A part of TNO Built Environment and Geosciences
 - soil and groundwater
- Sections of Rijkswaterstaat (study departments RIKZ, RIZA and DWW)
 - integrated water management and hydraulic engineering.
- → Deltares = Combination of above institutes "staff of ~800 / combined history > 400 years"

Deltares: implications for you and me?

- 1-1-2008: Creation of Deltares
- A "not-for-profit" foundation under Dutch law
- Stronger emphasis than before on the public task to maintain the integrated knowledge base for the civil protection and management of the wet / soil infrastructure of the Netherlands
- The "programme responsibility" for this public task has been transferred to Deltares; external review at 5 year intevals (?)
- So.....
 - Continuation of international outlook
 - Stronger R&D, next to Special Projects
 - But no operational tasks
- And....
 - Our commitment to research will not change
 - Increased cooperation with universities worldwide

NL Flood forecasting: Dutch coast in 6 sectors

Deltares

Flood (Pre-) Warning and Alarm levels

Frequency		2/year	1/year	1/5year	
Sector	Basis station	pre-W-level	W-level	A-level	
Scheldt	Flushing	310	330	370	
W Holland	Hook of Holland	200	220	280	
Dordrecht	Dordrecht	-	-	250	
Den Helder	Den Helder	-	190	260	
Harlingen	Harlingen	-	270	330	
Delfzijl	Delfzijl	260	300	380	
Storm Surge B	arriers				
SVKY	Krimpen a/d IJssel	210*	-	-	
SVKO	Eastern Scheldt	275	300*	-	
SVKW	Rotterdam Waterway	/ -	250	300*	
*) level when	storm surge barriers will	be closed			

Set up of present Flood Forecasting Models

A system of 4 nested 2D water level forecast models:

(1) DCSM \rightarrow (2) ZUNO \rightarrow (3) COASTZONE \rightarrow (4) RHINE+ROFI

Present operational flood forecasting

- DCSMv5 domain beyond shelf; 1/12° NS by 1/8° EW (~9.3 km)
- COASTZONE (boundary fitted): ~200m by ~300m along coast to ~100m in estuaries
- COASTZONE: various local models are nested in COASTZONE
- Operationally: 4 times/day T=36 hrs; HIRLAM 11 by 11 km winds
- Forecasts are prepared for 6 main stations / sectors,
- Kalman filtering for forecast improvement (Steady state approach);
- Man machine mix in fixing the official forecasts and warnings
- Status calibration: 1998; including limited altimeter data
- Only water level forecasts –"best guesses" added for wave effects
- Present DCSMv5 model is at the end of its life cycle

DCSMv5 model: 1/12° NS by 1/8° EW (~9.3 km)

DCSMv5: very low resolution in the Delfzijl inlet

Considerations for a new system

- NOOS cooperation: new bathymetry data for North Sea domain
- Awareness of the importance of wave forces
- Awareness of the varying quality of sea defences
- → Can we predict the hydraulic loads per sea defence section?
- Effect of Katrina: Longer forecast window / evacuation?
- System at end of life cycle; computational efficiency
- Key staff will reach retirement age over next 5 years
- → Early 2006: proposal: "Improvement flood forecast models"
- All Saints storm of 1 November 2006 confirmed the weaknesses of the present forecast system
 - Delfzijl: $H_{peak/obs} = 483$ cm; $H_{peak/forecast} = 400$ cm: $\Delta H_{peak} = -83$ cm

All Saints Storm 1 November 2006

sector	station	datum 2006		omisch W	SVSD verwach	opget H		scheve opzet	VW / W/	tij dstip geven waarschuwing
			tijd	stand	-ting	tijd	stand	op HW	Α	/ alarmering
West Holland	Hoek van Holland	31 okt	22h 26	+ 108	+240	22h40	+ 247	139	w	31 okt 16h30
Den Helder	Den Helder	1 nov	02h24	+78	+220	0 2h30	+ 238	160	W	31okt 20h30
Harlingen	Harlinge n	1 nov	04h 24	+ 105	+320	04h00	+ 326	221	W	31 okt 22h00
Delfzijl	Delfzijl	1 nov	07h00	+138	+400	06h40	+483	345	Α	31 okt 23h30

sector station date T_{HW} H_{HW} FC T_{obs} H_{obs} H_{surge} $T_{warning}$ (tidal part)

 \rightarrow warnings in time; $\Delta H_{peak} = -7$ cm, + 18 cm, - 6 cm, - 83 cm, respectively

Water level model – DCSMv6

- Spherico-curvilinear grid approach; yet 2D physics
- Larger domain for DCSMv6:
 - 5x5 refinement of resolution to 1/60° by 1/40°;
- ZUNOv4: 3x3 refinement: = resolution COASTZONE
- Domain decomposition: double-domain approach;
- based on detailed 1 km (NOOS) bathymetry
- Inclusion of Tide Generation Forces
- Including diagnostic salinity distribution (MDT proxy)
- Tidal boundary forcing: 12 constituents
 - SA, SSA, MF, MM, Q1, O1, P1, K1, N2, M2, S2, K2
- Initial tidal forcing estimate:
 - from a blending of T/P data and GOT.02 results

Water level model – DCSMv6

55 - 50 - DCSMv6 +ZUNOv4 - 45 - 10 -5 0 5 10 15

DCSMv6 local resolution

Water level model – DCSMv6 + ZUNOv4

DCSMv6 local resolution

ZUNOv4 local resolution

Bathymetry model – DCSMv6 + ZUNOv4

Calibration approach:

- On tidal water levels (year 2007):
 - NOOS exchange stations;
 - historic project data (e.g. Conslex-82);
 - T/P and Jason altimetry (Cross-overs)
- "Telescoping":
 - from overall response to detailed distribution
- Use of OpenDA portable data assimilation environment
- Optimisation techniques: DUD, Simplex, Powell
- Includes constraints and provides uncertainty bands
- BC's + sub-regional area-mean depths / bed friction
- Sub-region by subregion: from outer to inner
- Last: calibration of air-sea exchange parameterisation

North Sea part, stations and T/P - Jason tracks

Calibration approach: OpenDA

- OpenDA: merging of DATools and COSTA developments
- Generic approach for "wrapping" process models with OpenDA
- OpenDA also features options for Uncertainty Analysis
- Coupling to other models (MIKE21, CARDINAL): straightforward
- Intended for wide user community of non-specialists:
 - sofar: 3 types of filters plus 3 calibration routines
 - more will be added (TUDelft and wider academia)
 - including features to offset often limited monitoring data
 - much attention to uncertainty prescription
 - much attention to postprocessing of results
 - detailed user documentation
- Calibration applications sofar: mainly in wave modelling (SWAN)
- Improvement of operational forecasts since 2006, e.g. in FEWS

OpenDA data assimilation environment

Portable - generic coupling with process models

- DUE (Data Uncertainty Engine)
- DUE/WL (μ, σ)
- Sobek/CF, Sobek/RE (River flows)
- HBV, REW, HYMOD (Rainfall Runoff)
- Delft3D-FLOW (3D flows)
- SWAN, SIMONA (waves, 3D flows)
- PI Time Series
- Map Files
- OpenMI-wrapped state
- Particle Filter / SIR, ...
- Ensemble Kalman Filter, RRSQRT
- DUD, Powell, Simplex

Wave model – SWAN_NorthSea

- During storms, waves strongly contribute to forces on the sea defence in terms of
 - wave run-up, slamming and overtopping
- •In shallow water, wave-driven currents strongly add to the tide and surge induced currents (and erosion, etc.)
- → Simulate SWAN deep water physics on the DCSMv5 grid (~9.3 km) (driven by boundary forcing from ECMWF model)
- → From ~20m contour: full non-linear SWAN physics on the ZUNOv4 grid
- 2D spectra provide $H_{ms}, T_{m-1,0}, \theta, H_{ms} * T_{m-1,0}$ and $\sqrt{H_{ms}} * T_{m-1,0}$
- •Parameters of interest at toe: $H_{\it ms}$ * $T_{\it m-1,0}$ (overtopping) and $\sqrt{H_{\it ms}}$ * $T_{\it m-1,0}$ (damage due to wave attack/ forces/ slamming)

SWAN: 3rd generation wave model

Phase-averaging model that solves the spectral action balance equation, in Cartesian or spherical coordinates, without any *ad hoc* assumption on the shape of the wave spectrum.

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial x} (c_x N) + \frac{\partial}{\partial y} (c_y N) + \frac{\partial}{\partial \sigma} (c_\sigma N) + \frac{\partial}{\partial \theta} (c_\theta N) = \frac{S_{tot}}{\sigma}$$

 S_{tot} =wind input+ wave-wave non-linear interactions (quadruplets &/+triads)+ whitecapping + bottom friction+ depth induced wave breaking

Some of SWAN's source terms can be chosen from a couple of options.

SWAN: test case North Sea

Test set-up (here: steady state SWAN approach):

- •directional resolution of 10 degrees
- •37 frequencies between 0.03 and 1 Hz.
- •BSBT numerical scheme with 5 min time step
- Comparison with field data
 - → presently limited data close to coast
- •Calibration (2009): → via OpenDA

Time schedule of implementation / operation

- April 2009?: DCSM 2-domain calibration completed
- April 2009?: SWAN calibration completed
- July 2009?: Setup of operational environment:
 - → time stepping of SWAN and DCSM in parallel
 - → data exchanges through OpenDA (much re-use of interfacing software; modular set up)
- 15 September 2009?: pre-operational testing of new system in "shadow mode"
- 15 September 2010?: parallel operational use
- 15 September 2011?; acceptance test completed and discontinuation of DCSMv5

