

GIS-Based Spatial Models for Japanese Kelp (*Laminaria japonica*) Aquaculture Site Selection in the Southwestern Hokkaido, Japan

I Nyoman Radiarta^{1,2}, <u>Sei-Ichi Saitoh</u>¹, Toru Hirawake¹ and Hajime Yasui¹

¹Faculty of Fisheries Sciences, Hokkaido University ²Center for Aquaculture Research and Development, Indonesia *Email: ssaitoh@salmon.fish.hokudai.ac.jp*

Introduction

- → >50 species reported, only about
 20 kelp species present in Asia Pacific regions (Scoggan *et al.*, 1989).
- Japanese kelp important species cultured and harvested in the world.
- In Japan, mainly found along the Pacific coast of southern Hokkaido and northern part of Honsu.
- Japan production from capture and aquaculture.
- □ In 2007, aquaculture contribute 36%.

Introduction

Site selection is preliminary step for any aquaculture operations

Objective

To identify the most suitable sites for hanging culture of Japanese kelp, *Laminaria japonica*, aquaculture development in southern Hokkaido, Japan

Study area

Study area

- Southern Hokkaido
- Coastline 368 km
- ☐ Influence by OW (cold water) and TW (warm water)

General approach

General approach

Identification of
important parameters
for Japanese
kelp aquaculture
J<
Spatial data
construction
¥
Scores and weighting
*
GIS-based MCA
models
*
Suitable site of
kelp aquaculture

SST	MODIS	2004-2010
SDD*	K _d 490-MODIS	2004-2010
	Hardcopy and digital	
Slope	Bathymetry	
Town; Pier; Facility; River; Harbor	ALOS AVNIR-2	Nov., 5, 2009; Oct., 5, 2010 Dec., 7, 2010

* SDD = $1.04 \times K_d (490)^{-0.82}$

[Chen et al., 2007. Remote Sensing of Environment 109, 249-259]

Model construction

Built on hierarchical structure

Factors: 7 parameters

Constraints: 2 parameters

Scoring: 1 (least suitable) - 8 (most suitable) (Radiarta et al., 2008)

Parameters	Suitability rating and score								
	8	7	6	5	4	3	2	1	
Batymetry (m)	10-25	9-10 or 25-30	8-9 or 30-35	7-8 or 35-40	6-7 or 40-45	5-6 or 45-50	4-5 or 50-60	>60 or < 4	
Secchi Disk Depth (m)	7	6-7	5-6	4-5	3-4	2-3	1-2	<1	
Distance to town (km)	<3	3-4	4-5	5-6	6-7	7-8	8-9	>9	

Weighting: MCE method known AHP (Saaty, 1977)

Parameters	SST	Secchi disk depth	Bathymetry	Slope	Weight
SST	1	2	3	4	0.46
Secchi disk depth	1/2	1	2	3	0.28
Bathymetry	1/3	1/2	1	2	0.16
Slope	1/4	1/3	1/2	1	0.10

Consistency Ratio: 0.015 (< 0.1 accepted)

Model construction

 w_j = weight, Σw_j = 1, r_{ij} = the attribute transformed into score (1-8) The most preferred alternative is the maximum V(xi) value

Sensitivity analysis

- This analysis connected to the parameters that had temporal variability
- Local sensitivity analysis using interval values of ±5%, ± 10%, and ± 20% of the reference values

Result: potential area

Suitable area based on 60m depth: to minimize operation costs and difficulty in mooring systems
 Potential area about 1541 km² [constraint = 104 km²]

Results: environmental submodel

Suitability levels (%)										
0	1	2	3	4	5	6	7	8		
7.0	0.0	0.0	0.2	1.0	2.8	17.0	66.0	6.0		

Results: socio-infrastructural submodel

Suitability levels (%)									
0	1	2	3	4	5	6	7	8	
7.0	8.0	5.0	3.0	5.0	6.0	6.0	8.0	52.0	

Results: overall suitable model

Environment submodel

Socio-infra submodel

Results: overall suitable model

Suitability levels (%)									
0	1	2	3	4	5	6	7	8	
7.0	0.0	0.0	0.0	2.0	14.0	17.0	54.0	6.0	

Results: model validation

Minamikayabe; Shikabe; Esan, and Toi: High potential area for kelp cultivation [production]

Results: sensitivity analysis

Yearly model from 2004-2010

2004-2010

Discussion

The Oceanic Niño Index (ONI)

[3 month running mean of ERSST.v3b SST anomalies

12DE 15GE 18D 15GW 12DW 9GW 6DW

- The changes in sea surface temperature might impacts on the productivity across the coastal and marine systems
- El Niño- low spat density of scallop; La Niña- low growth of scallop (Baba et al., 2009)
- Normal or week El Niño years- increasing high score regions (2005, 2006 and 2008: warmer SST)

Conclusions

- □ Southern Hokkaido has a potential area for kelp aquaculture development.
- ☐ High suitable area dominantly located between Shikabe to Toi coastal areas.
- ☐ Interannual variability was observed: Good years 2005, 2006 and 2008 (Normal or week El Niño years)
- ☐ This study has illustrated how GIS database of different formats and sources could be used to establish spatial models in the coastal area for kelp aquaculture development.