Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations

Jennifer E. Purcell

Shannon Point Marine Center Western Washington University

Human problems with jellyfish

Stinging – health + reduced tourism

Many effects on fish

- Interfere with fishing clog nets, ruin and reduce fish catches
- Kill fish in aquaculture pens
- Predators and competitors of fish

 Clog intake screens of power and desalination plants causing shutdowns (Israel and Scotland 2011)

Recent jellyfish blooms worldwide

Problems with jellyfish are increasing

(Purcell et al. 2007; Purcell 2011)

Aurelia aurita

Nemopilema normuri (@ Natl Geogr)

Possible causes of jellyfish increases

- Fishing removes predators + competitors
- Eutrophication high nutrients, low silica, flagellate-based food web; hypoxia
- Climate change warming etc.
- Species introductions
- Aquaculture habitat and nutrients added

Examine the evidence that problems with jellyfish have occurred where the most humans have lived for the longest time

Human population growth (Tanton 1995) each dot = 1 million humans

Human population and acceleration of environmental damage

Fishing pressure 1950 vs. 2005

(Swartz et al. 2010)

Fishing removes

•competitors of jellyfish

Eutrophication

- Increases food available
- Planktonic foods become smaller, nutrient ratios changed

Hypoxia

(Boesch et al. 2002)

Sea temperature warming

(Halpern et al. 2008)

- Directly affects jellyfish growth and reproduction
- Changes ocean productivity
- Correlations of warming with abundant jellyfish

Jellyfish life cycle

ephyra

strobilation

Moon jellyfish total polyp & ephyra production 104 d Temperature 7, 10, 15°C; salinity 20, 27, 34 More jellyfish were produced more quickly

Species introductions -- shipping

Comb jelly *Mnemiopsis*

Blue=low Red=high

Blue dots = native Orange = introduced

(Costello et al. submitted)

Combined human impacts

(Halpern et al. 2008)

Combined human impacts

(Halpern et al. 2008)

Human impacts in regions with jellyfish problems -- rankings of 180 regions

(from Halpern et al. 2008)

Location	Score millions	Rank	Humans km ⁻²	FiB	N load	DO
E Bering Sea	9.1	2	0.1	1.5	< 0.1	
EastChinaSea	8.7	3	214	1.7	3.0	S
North Sea	8.7	4	482	-0.04	4.1	M
Celtic Sea	6.8	5	464	1.8	3.2	М
Yellow Sea	4.6	6	156	1.6	5.6	S
Baltic Sea	3.7	9	49	0.24	6.2	WP

Some impacts important for jellyfish blooms were not in Halpern et al. (2008)

- hypoxia
- shoreline hardening provides habitat for jellyfish polyps
- aquaculture provides habitat for polyps, adds food

Hypoxia (low dissolved oxygen) occurs world-wide in coastal waters

•Added nutrients cause more phytoplankton to be produced than consumed. Excess decomposes

Jellyfish are more tolerant of hypoxia than fish

- Fish avoid or die in waters < 2 mg O₂ I⁻¹
- Mnemiopsis ctenophores live for > 72 h at 0.5 mg O₂ I⁻¹ (Purcell et al. 2001)
- Chrysaora quinquecirrha medusae lived > 96 h at 1 mg O₂ l⁻¹; their polyps can live and reproduce at 0.5 mg O₂ l⁻¹ (Purcell et al. 2001)
- Aurelia aurita polyps inhabit the bottom of harbor pilings in hypoxic Tokyo Bay where no other fouling occurs; planulae settled and polyps reproduced at 2 mg O₂ I⁻¹ (Ishii et al. 2008; Ishii & Katsukoshi 2010)
- Several other jellyfish species are very tolerant of hypoxia (Purcell et al. 2001; Rutherford & Thuesen 2005)

Human impacts ("hardening") not included in Halpern et al. (2008) from Duarte et al. (submitted)

Human impacts (ports & aquaculture) not included in Halpern et al. (2008)

Aquaculture production (mtons / km coast)

Blue = low Pink = high Green dots = ports Duarte et al. (submitted)

Cornet Bay 17 Jan 04 Marina

Moon jellyfish 10 polyps cm⁻² 685 m²

17 Feb 04

13.4 disks polyp⁻¹
≈ 918 million moon jellies produced in marina

(Purcell et al. 2009)

Jellyfish in Tapong Bay 1999-2005 before and after oyster rack removal (Lo et al. 2008)

Removal of racks

- removed polyp attachment sites
- removed shading
- increased water transport from bay

Aquaculture trends 1950-2008

Summary

- All probable causes of jellyfish increases are occurring together and increasing on coasts globally
 - Fishing removes predators+competitors
 - Eutrophication high nutrients, low silica, flagellatebased food web; hypoxia
 - •Climate change warming etc.
 - Species introductions
 - Aquaculture habitat and nutrients added
- Human problems with jellyfish are likely to increase