Comparison of migration algorithms for Japanese sardine
(Sardinops melanostictus) in the western North Pacific
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Japanese sardine makes a large migration between Kuroshio
(subtropical) region and Oyashio (subarctic) region.
However, the migration pattern is still unclear.
e.g. How far they migrate to the offshore?
What environmental factors are controlling their migration?



Development of migration model
(Okunishi et al., 2009, Ecol. Model.)
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migration algorism

1. Feeding migration: Fitness algorithm
toward the most preferable place
growth index estimated by the bioenergetics model

was used for measure

2. Spawning migration: Artificial neural network (ANN)
migration direction was learned using ANN with five
environmental factors as input signals

SST, SST change, current, day length, land
to seek optimal parameter of ANN, Genetic algorism was

used.
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Okunishi et al. (2009)

feeding migration (age 1+)

general pattern of feeding migration are reproduced

by the fitness (optimal growth) migration algorithm.

Okunishi et al. (2009)



Spawning migration (ANN+GA)
Artificial Neural Network Huse & Giske (1998)
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current
Day length

land

Genetic Algorithm

Reproduction /Weight parameters
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Sardlne mlgratlon (GA+ANN+BP

Southward Migration l
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Q1: Migration across the Subarctic Boundary

Observation data shows fish
(Age 0) distributes in the
northern waters of SST 12-14
degC in autumn.
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However, the model did not simulate the habitat of high
latitude region, which is low SST blow 15 degree Celsius, in



Multi-trophic level ecosystem model

3D- Lower Trophic Ecosystem Model

(NEMURO)

T —y

Sardine Migratioh Model

based on Okunishi et al (2009

(Fish ) D - Individual Based Model (IBM)

Lagrangean Model
for simulating migration
*Sea surface current from climate model
*Fish swim by searching for local optimal
habitats during feeding migration.
» Adult fish is strongly oriented in
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homeward direction during spawning
migration.
Bioenergetics Model
for simulating growth
*SST from Climate model
*Forage density from NEMURO

Population

Super-individuals were used to allow the IBM to
represent the sardine population.

The internal number in a super-individual is reduced
due to mortality.



Escaping behavior from skipjack tuna
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Feedlng Migration
I Case A
: Fish swims by searching optimal habitats (Max, growth rate)
and escapes from high predation risk (by skipjack tuna).



Predation Risk from Skipjack Tuna

1.0-
0.8 ]XX‘
06 \
0.4- An example of histogram of
' skipjack catch as a function of SST
0.2
(May).
10 15 20 25 30
SST

Feeding migration : toward high fithess regions
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Observation data shows fish (Age 0)
~ distributes in the area which SST is12-14
degC in autumn.

Jll When the escaping behavior is included,
sardine migrates to the north of the
Subarctic Boundary.
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Case A : HI= Growth Rate * (1-Predation Risk) Case B - Habitat index =Growth Rate



Q2: Is escaping behavior controlling
the sardine migration.

Kinesis algorism (Humston et al, 2000)

swimming velocity
St =1(Sy4) +9(0O)

f(Si1)=Siy X Hy X HI depending on previous speed
9(©)== O x(1-H,xHIl)random component

H,=0.75, H,=0.9, HI: habitat index
|&€| maximum sustained swimming velocity =5 Body Length (m s)
extended Kinesis algorism (Okunishi et al, accepted to F.O.)
add component of better condition compared with previous (HIn > Hin-1)
S;=S;.1— (S~ |€] /] Sy [ X Hg ) x HI

H,=0.5 keep the direction but slowdown



e.g. 2006 April spawned cohort
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migration to the north of the Subarctic Boundary was reproduced.
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edots shows fish and color is changed according to
the growth.
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In situ observation of sardine juvenile

(Kawabata et al., 2008)



e.g. 2006 April spawned cohort
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Comparison of three algorisms

(a) Fitness madel

Only extended kinesis model
can reproduced northern

;o migration of sardine without
130° 140° 150° 160" 170" 180° escaping behaviour.

(b) Kinesis mudel
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Summary

1) Feeding migration seems easier to imitate.
Spawning migration was trained by ANN+GA.

2) All of fitness, kinesis, extended Kkinesis reproduced
reasonable feeding migrations of Japanese sardine.

3) Only escaping behavior or extended kinesis reproduced
northern migration across the Subarctic Boundary.
Need biological information to model fish behavior.

Extended kinesis algorism seems good except that kinesis
type algorism includes random components and need
ensemble runs.

Interaction between species is still difficult to model it.
We need high technical observation methods to observe
fish behaviour regarding species interaction.
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