Towards spatially explicit fish representation in end-to-end models

Kjell Rong Utne & Geir Huse

The Norwegian Sea

The species and their position in the water column during the feeding period

Study overview

- Horizontal distribution
- Temperature
- Overlap

2. Acoustics

- Vertical distribution
- Interactions

- •Simulate feeding migrations
- Horizontal overlap

- Simulate feeding pressure on zooplankton
- Interactions fish species

Study overview

- Horizontal distribution
- Temperature
- Overlap

- Vertical distribution
- Interactions

3. Modelling

- •Simulate feeding migrations
- Horizontal overlap

- Simulate feeding pressure on zooplankton
- Interactions fish species

Modelling fish migrations without zooplankton

Aim:

- Simulate feeding migrations
- Know the spatial distribution during the feeding period
- •Quantify the daily horizontal overlap

Approach:

- Individual based models
- Genetic algorithm to optimize migration parameters
- Validated with survey observations (early and late summer)
 - Herring and blue whiting echo sounder
 - •Mackerel trawl catches

Migration model

Individual movement – own decision and currents

- •The fish cannot migrate into water masses colder than 2 (her and bw) or 8° C (mac).
- •The simulations are a combination of modelling fish movement and hardwired movement.

Optimize migrations parameters

- Migration speed, direction and randomness
- Survey observations
- Genetic Algorithm (GA)
- 10 simulations, keep 2, 30 generations

Herring migration vectors

Black arrows Early summer

Gray arrows

Late summer

- Overlap between two species
- Overlap between three species

Study overview

- Horizontal distribution
- Temperature
- Overlap

2. Acoustics

- Vertical distribution
- Interactions

3. Modelling

- Simulate feeding migrations
- Horizontal overlap

- Simulate feeding pressure on zooplankton
- Interactions fish species

NORWECOM Coupled model system

Feeding behaviour fish

Holling type 2 – functional response

Calanus finmarchicus (g/m²)

Summer

Growth = C - (R+S+F+U)

- C = Consumption (temperature-dependent)
- R = Respiration (energy used for metabolism, temperature-dependent)
- S = SDA (Specific dynamic action)
- F = Feces (Undigested food)
- U = Excretion (Organic waste from metabolism)

Recreate in the model:

- Historic growth including gonads
- Observed diet composition

Total consumption in 1997

All numbers in million tonnes

	C finmarchicus	Other prey
Herring	24.5	26
Blue whiting	4	14
Mackerel	6.5	7
Totally	35	47

Annual zooplankton production is unknown Rough estimate is 600 million tonnes (Skjoldal et al 2004)

Upper 400m, C4-C6 C.Finmarchicus abundance [1000 individuals/m²]

a) Mid-June with dynamic fish distribution b) Mid-Aug with dynamic fish distribution

Historic approaches and thoughts for the future

Substitutes for zooplankton:

Temperature and phytoplankton -> No feedback

One way coupling -> Two way coupling

What is most important during the feeding period?

- 1. Survive
- 2. Eat

With dynamic zooplankton fields with feedback, hypothesis about fish migrations can be tested.

More prey species will be included in the model system.

Downside: Simulation time