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Some Future Directions in Modeling

* Expansion of domains and finer resolution
e Spatially-detailed data requiring mining

e Mesoscale features within decadal
simulations



Some Future Directions in Modeling

Refinement of climate change beyond
temperature

Coupled natural and human systems
Confrontational science

Today:
— End-to-end models
— People and collaboration issues



Stalled Areas that Affect Modeling

Community ecology
— predation and competition
— diversity

Coding of models

Public knowledge of science and trust in
scientists

Model forecasting of ecological conditions



Stalled Areas that Affect Modeling

Ecosystem-based fisheries management
Remote sensing
Model coupling

Density-dependence



End-to-End Models

 Much emphasis on climate to fish linkages
— Global change issues
— Bottom-up, middle-out, top-down controls

e Increasing pressure for ecosystem-based
considerations in management

« Continuation of the NEMURO effort
— Multi-species, individual-based, physics to fish model
— Proof of principle



Why now?

e Advances in data collection
— Spatially-detailed data
— Behavioral measurements

e Continued increases in computing power

* Advances in modeling
— Physics: meso-scale features in decadal runs
— Fish: individual-based, fine-scale observations




Challenge

How to combine models with different
temporal and spatial scales

No general theory
— Modeling as art

Including human dimensions

Working across disciplines
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Plaganyi (2007)



End-to-End Model

Proof of Principle

e Sardine — anchovy population cycles
— well-studied
— teleconnections across basins

e Good case study
— Forage fish tightly coupled to NPZ
— Important ecologically and widely distributed
— Cycles documented in many systems
— Recent emphasis on spatial aspects of cycles

« Demonstrates we can solve some of the technical
Issues
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NOAA HPCC
High Performance
Computing and
Communications



http://www.nsf.gov/
http://cameo.noaa.gov/
http://www.cibnor.mx/
http://www.apn.gr.jp/newAPN/activities/capable.htm
http://www.micinn.es/
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Why IBM for Fish

Natural unit in nature

Allows for local interactions and complex
systems dynamics

Complicated life histories
Plasticity and size-based interactions

Conceptually easier movement



NEMUroms.SAN

Model 1: 3-D ROMS for physics
Model 2: NEMURO for NPZ
Model 3: Multiple-species IBM for fish

Model 4. Agent-based fishing fleet



Model 1: ROMS

e Grid:
44x114 horizontal grid
30 km resolution
30 vertical levels

e Run duration: 40
years (1960-2004)

* Hourly time step



Model 2: NEMURO



Model 3: Fish IBM

Species Types

e Sardines and anchovy — fully modeled
— Reproduction, growth, mortality, movement
— Competitors (food, space) and predators

e Migratory predator
— Enter and exit the grid

— Movement and consumption of sardine and
anchovy only

— “albacore”



Model 4: Fishing Fleet

100 boats and 5 ports - sardine
Day boats so complete a trip in 24 hours
Dally evaluation

Compute expected net revenue (ENR) based on:
— Perceived CPUE (10-day average)

— Price per pound

— Cost per km

— Return to nearest port



Numerical Detalls

Major numerical and bookkeeping challenges
Solving everything simultaneously

We are working within ROMS source code, using
the available particle tracking features

Computing speed, mass balance, Eulerian with
Lagrangian, and full life cycle

1960 to 2004
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Next Steps

It can be done — proof of principle

Next, Is 1t useful?

Parallel effort in
Japan (lto-san)

Earth system
model



Data Needs — Title of Symposium

Long-term monitoring
— Decadal scale
— Multiple generations of fish populations

Spatio-temporal distributions
— Vertical dynamics (e.g., SST compared to satellite)
— Lagrangian versus Eulerian

Zooplankton as a population dynamics

Behavioral movement



Interdisciplinary Aspects

* Not just for end-to-end models but most all
modeling into the future

e |nstitutional

* People



Preparation documents sent to review panel members
for the Gulf of Mexico Red Snapper stock assessment



|Institutional

e “silo” legacy
— Different departments, buildings, agencies

i ) $40 million gift from W.M. Keck Foundation
° Fund”’]g agenC|eS to US National Academies (Science 2003)

— Risk “To bring about structural changes
L In funding organizations and
— dISClpllneS academic institutions... to identify

shortcomings ... that hinder
interdisciplinary science”

"We can lick gravity, but the paperwork's a bit tougher."
- Werner von Braun, Director of NASA’s Marshall Space Flight Center




Galileo Newton
Darwin Einstein

Guimera et al. 2005

Crick and Watson !nternational Human Genome
Sequencing Consortium

Barabasi 2005

| Ecology 4} Astronomy

1960 1980 2000 1960 1980 2000
Year Year




FACILITATING
INTERDISCIPLINARY

RESEARCH

Committee on Facilitating Interdisciplinary Research
Committee on Science, Engineering, and Public Policy

"You should check your e-mails more
often. | fired you over three weeks ago."

| know little about nature
and hardly anything about men.
-- Einstein

GLOBEC

PICES




Complexity Theory

Result is not simply sum of the parts
Nonlinear responses
Chaos — future Iirregularity

We use It for ecological
systems but also used for learning



Sclentists as Learners

Group learning can be challenging
— New unfamiliar methods
— Challenge to the status quo

To varying degrees, scientist’s positions and
opinions are associated with institutional culture,
traditions, and personal attachments

New or unfamiliar knowledge can challenge self-
identity, and learners strive for internal stability

Personalities influence roles people take and
group success



Group Dynamics

 Much already about group dynamics

e Evolution (Adair 1986)
— Forming — Storming — Norming — Performing

o Group members
— doer, carer, achiever, thinker, leader

— monopoliser, silent member, saboteur, habitual joker,
know-it-all

— hubs, diversity, incumbents, newcomers — network
analysis to citation indices



Learning Difficult Knowledge
(an extreme case)
(J. Rose, 2007)
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Concluding Remarks

e Listed areas of future advances and areas
that have seemingly, in my humble
opinion, stalled

 One advancing area Is end-to-end models
— Many technical issues — solvable
— Proof of principle with sardine and anchovy
— Mentioned data needs



Concluding Remarks

e Collaboration
— Important to end-to-end and all modeling
— | think needs more consideration — too ad hoc
— Roles people play within a group
— Scientists as learners

 Hence the title: Can biology and people
keep up with computers?



/

What we want to avoid

A In future models

What we want more of
as we develop new models

Rose, K.A., in review. End-to-end models for marine ecosystems: Are we on the
precipice of a significant advance or just putting lipstick on a pig? Scientia Marina



Call for Papers

Climate Change and Marine
Ecosystem Models

Special Issue of Ecological Modelling
Contact one of the guest editors:
Kenneth Rose: karose@Isu.edu

Francisco Werner: cisco.werner@noaa.goVv
lcarus Allen: jla@pml.ac.uk
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