Uncertainties in Modelling Water-borne Disease Transmission among Salmon Farms in the Discovery Islands, British Columbia

Mike Foreman¹, Kyle Garver², Dario Stucchi¹, Ming Guo¹, Darren Tuele¹, Jared Isaac³, John Morrison¹

¹Institute of Ocean Sciences, Sidney

²Pacific Biological Station, Nanaimo

³Department of Mechanical Engineering, University of Victoria

Fisheries and Oceans Canada Pêches et Océans Canada

Outline

- Background & motivation
- Circulation model
- Biological model
- Uncertainties
- · Summary & future work

Infectious Hematopoietic Necrosis Virus (IHNV)

- Infects a variety of salmon and trout species along the northeast Pacific
- BC farmed Atlantic salmon infections:
 - 1992-97: 14 netpen sites near Campbell River
 - •2001: 26 sites, spread from Campbell River
 - •2002: 10 sites on west coast of Vancouver Island
- High costs- culling entire farms

What was learned?

- Transmission spread rapidly
- · Infected farms had an identical virus type
 - → farm to farm transmission
 - Anthropogenic (poor bio-security)
 - Waterborne (needs more study)

Model Components

1. Circulation model:

- FVCOM
 - Finite Volume Coastal Ocean Model
- Requires observational data to initialize, force, & evaluate

2. Coupled biological model:

- Takes FVCOM output + UV radiation observations to disperse & kill I HN viruses originating on salmon farms
 - Standard "particle" tracking
- Requires lab experiment results to specify model parameters & relationships
 - Shedding rates, minimum infective dosages, virus stability, ...

Field Observations

- Weather stations:
 - 12 deployed: Oct 2009 to Feb 2010
 - Measure winds, UV radiation, heat flux components
- Water property surveys:
 - Temperature & salinity profiles
- Current Meter Moorings:
 - 3 deployed in Oct 2009

Regional Challenges

- Deep fiords with seasonal river discharges
 - Strong stratification
 - Potential baroclinic pressure gradient problems in FVCOM
- strong mixing in island channels
 - Some of the strongest tidal currents in the world

Model Overview

- Simulation for April 1-28, 2010
 - Tides, river discharge & weather station data for forcing
 - April 1-4 CTD observations blended with climatology to initialize TS fields
 - Current meter & tide gauge observations to evaluate accuracy
- Horizontal grid:
 - 37596 nodes, 68467 triangles
 - Resolution from 1.7km to 90m
 - 11 rivers
- Vertical grid:
 - 20 unequally-spaced sigma coordinates

Model Evaluations: sea level

M₂ & K₁ Tidal Elevation Evaluations

Average amplitude/phase errors vs 24 tide gauge locations

- distance in complex space
- M₂: 3.9 cm
- K₁: 3.2 cm

M₂ & K₁ Tidal Current Evaluations vs Depth

- K₁ model speeds generally OK
- •M₂ not as good
 - Surface values good at Discovery but deteriorate with depth
 - off Cape Mudge, too weak
 - in Nodales, too strong

IHN Virus Biological Model

IHN virus mortality function of T, S, UV radiation

$$V(t) = V(t-1) * \exp(-a * U(t)_0 * \exp(-kz) - b)$$

V(t) is the virus concentration, U(t) is the UV radiation value at sea surface, z is the depth, a, k and b are constant values determined from lab experiments

Time series of virus concentration and average depth for 3 farm releases

Preliminary Near-Surface Concentrations

(100,000 virus particles released per hour over 19 days & in top 2m, tracked for 5 days)

Will nearby farms be infected?

- Model viral releases need to be scaled by the shedding rates
 - Lab work estimated 6 x10¹⁰
 viral particles per hour
 - Scale-up present concentrations (max 1 virus/m³) by 6x10⁵
- Model concentration fields need to be interpreted in terms of minimum infectious dose
 - Lab min dose is

 10 PFU/ml = 10⁷ virus/m³
 - ➤ Nearby farms may not be infected (under present assumptions)

Model Uncertainties

- Biological model
 - Extension of lab-based parameters & relationships to open ocean
 - Shedding rates; minimum infective dosages; virus stability with UV, T, S;
 - Neglect of other important factors (e.g., bacterial content)?
- Physical model
 - accuracy of model fields (u, v, w, T, S)
 - Sufficient range of model simulations (over different forcing conditions)

Reducing Uncertainties

- Biological model
 - Field observations (where feasible) & more lab experiments
 - An actual disease outbreak to provide data
- Physical model
 - More observations to evaluate model accuracy
 - Improvements in model forcing fields, resolution, physical processes, ...

Summary

Preliminary circulation & IHN virus water-borne transmission models have been developed for the Discovery I slands

- Many uncertainties
 - Some can be reduced

Future Work

- Model details:
 - Move to higher resolution grid
 - Better coastline & depths
 - Implement newer/faster(?) version of FVCOM
- Model simulations
 - Virus releases below 2m
 - include other mortality dependencies (e.g., T,S)
 - Later in summer with more freshwater

