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SCOR WG 137 Long-term Comparative Study Sites

Coastal Ocean: <10% of worlds ocean >30% of global marine primary production




Environmental Factors Impacting Coastal Phytoplankton Communities
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Key interactive drivers discussed here

Nutrients: N, P, Si, Fe

Climatic: temperature, precipitation/FW discharge,
circulation/stratification

eLight (transparency, color)
*Top-down: Grazing, predation, trophic interactions
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The forms of N and P enrichment matter: Effects of DIN, DON and P on
HABs in the New River Estuary, NC

Dinoflagellate (Peridinin) biomass and Cyanobacteria (multiple) indicator pigment responses

Anabaenopsis sp

Karlodinium sp

\ Heterocys

ts: site of
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Scrippsiella trachoidea Altman & Paerl 2012. Anabaenopsis sp




The Interactive effects of Climate Change (warming & hydrology)
on phytoplankton communities




Increasing CPR-Chi-a in North Sea

Eutrophication or climate?.

Data sources: Continuous plankton recorder (CPR), Europ. Environ. Agency



North Sea

(Data: CPR, Europ. Envir.
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Changes in abundance/seasonality

Guinardia delicatula Thalassionema nitzschioides Odontella aurita
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Wiltshire et al. 2010 Reason? In the case of Guinardia, preference for warmer temperatures




US Mid-Atlantic Coastal Waters: The Neuse-Pamlico Sound System,

The US's Largest Lagoon/Key Fishery: Recent increase in cyanobacterial dominance




Seasonal patterns of Chl aand cyanobacterial biomass (zeaxanthin) in the Neuse
River Estuary, NC
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Pelagic N, fixing picocyanobacterial abundance vs. temperature
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Temperature affects growth rates
influences dominance by various phytoplankton groups

Refs.: Kraweik 1982, Grzebyk & Berland 1996; Kudo et al., 2000,
Litaker et al., 2002, Briand et al., 2004, Butterwick et al., 2005,

Yamamoto & Nakahara 2005, Reynolds 2006




Freshwater discharge (flushing) interacts with temperature to impact

phytoplankton composition: Effects on diatom (fucoxanthin) & cyanobacterial
(zeaxanthin) dominance in the Neuse R.3 El)EsTuar'y, NC
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Chesapeake Bay: Remotely sensed chl-a from
SeaWIFS Aircraft Simulator (SAS Il) during low flow ('95)
and high flow ('96) years

spring '95, low flow spring '96, high flow
Harding et al. 2009



Chesapeake Bay CHEMTAX —
contrasting flow years
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329S: Patos Lagoon, Brazil

« The world largest choked lagoon

& Area:
10.227 km?

Hydrographic basin:

e 201.626 km?

 Main Cities

North:

Porto Alegre Pop.: 1.5 million.
South:

Rio Grande+Pelotas Pop.:~ 400,000.
Rio Grande Harbor
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Anthropogenic (Nutrient)- climatic interactions determine phytoplankton
community composition and function



Climate change and oligotrophication: Thau lagoon, France
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From 1995-2004, dinoflagellates have increased
in the northern and eastern Baltic Sea.

Shift has mostly been linked to climate variability
and changes in the physical environment, since
nutrients are not limiting at the beginning of the
spring bloom.

Wintertime mixing and resuspension of benthic
cysts, followed by proliferation in stratified thin
layers under melting ice favors motile
dinoflagelates over sinking diatoms. Motility
enables dinoflagellates compete with faster
growing, but sinking diatom:s.

Shifts in dominant spring bloom algal groups can
have significant effects on ecosystem
biogeochemical cycling and trophodynamics.



Long-term changes in phytoplankton
composition in the Gulf of Riga (1976-2008)
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Summer phytoplankton community (Jun-Sep)

Biomass Composition
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Climatically-driven Changes on Coastal
Upwelling due to shifts in
North Pacific Gyre Oscillation Effects on San
Francisco Bay, CA

Biological ramifications?




A Climate-Driven Trophic
Cascade in San Francisco Bay

NE Pacific shifted to its cool
phase (+NPGO/ -PDO) after 1998

/

Intensified upwelling and primary productivity
in coastal waters adjacent to SF Bay

Immigration of record-high numbers of marine
shrimp, juvenile flatfish & crabs (benthivores)

Disappearance of bivalve suspension feeders

Increased phytoplankton biomass

Cloern & Jassby 2012



Through a Trophic Cascade

PRIMARY HERBIVORES

PRODUCERS l
t PREDATORS

1



Scaling up to the Ecosystem

Nutrient and
Hydrologic drivers

PHYTOPLANKTON
COMMUNITY

'

FORM of Limiting Nutrient
(NO,, NH,*, DON)
Nutrient Ratios, Residence Time

Linkages Between Nutrient Inputs, Hydrology,
Phytoplankton Community Composition, Grazing,
ypoxia an isheries Habita

L4

OXIC

CONDITIONS

{}

Mixing

PHYSICAL

Yy

“ mm
i A
=a Grazed Grazing and > DECREASED
=#sseg Phytoplankton Water Column O, Depletion |
- Species Carbon Recycling Potentials
= .
- IR
- Nuisance / Toxic .
u
= Phytoplankton Carbon” ® INCREASED
R ety Species . )
P Deposition = O, Depletion
p 2
Some Dinoflagellates (POC) “ Potentials
Cyanobacteria .

*

*

*

*
‘0
Nutrient Regeneration _l R
Decomposition of POM e, _

CONTROLS

Stratification

~~

HYPOXIA
ANOXIA

“
“
*




Conclusions (for now)

« Strong interactions between climatic, nutrient and "top down" factors
control coastal ocean phytoplankton dynamics.

» Residence time and ocean-estuary exchange (flushing, transport)
determines sensitivity to eutrophication, biogeochemical/trophic changes.

* Nutrient input-phytoplankton growth & bloom thresholds need to
incorporate effects of climate change (warming, precip., stratification).

http://wgl137.net/



e The bulk of WG137’s data is being managed with the COPEPOD
Interactive Time-series Explorer (COPEPODITE) data system.

* The data handling process involves the transformation of
hundreds of raw data files into a common format, common
units, and indexing via a standardized variable identity set.

* WG137 (in cooperation with ICES-WGPME) has assembled a
database of over 150 phytoplankton sites.




The WG137 web site (http://WG137.net) features an interactive map and searching
tool that provides data and site contact information as well as a detailed graphical
and text summary for each site participating in the WG137 study.

As they become available, this site will also link to research results and publications.



http://wg137.net/
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