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Atmosphere: winter monsoon weakening

Winter monsoon is driven by atmospheric pressure heightening over the continent in
winter because of low air temperature. Its activity could be described by the Siberian
High Index (SHI) — mean atmospheric pressure over northern Asia.

A significant negative trend of SHI is observed in the last three decades with the
inclination —0.02 hPa per year. The tendency of the Siberian High weakening
corresponds to winter warming on the continent and possibly is caused by enhancing
of heat-insulating properties of the atmosphere (“greenhouse effect”).

This tendencyv is expected to continue. _
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Siberian High Index changes.
Its lowering means the weakening of winter monsoon that prevents the
sea surface cooling in the Japan Sea



Atmosphere: winter monsoon decadal
variation driven by Arctic Oscillation

Siberian High changes in relation with Arctic Oscillation (AO) (r = —0.42 for the 60-year
time series) — the process of periodic redistribution of air masses between polar and
moderate latitudes. In positive AO phases (1970s, 1990s), zonal transfers across the
continent become stronger that makes winters in Siberia warmer and Siberian High —
weaker; and in negative phases (1980s, 2000s) the AO makes Siberian High stronger.
These oscillations happen on the background of AO positive trend.
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Arctic Oscillation Index changes.
Its heightening means the strengthening of zonal transfers which make warmer
the winters in Siberia (from http://jisao.washington.edu/analyses0302/)
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Water: SST heightening

Winter air temperature in the Japan Sea correlates strongly both
with winter AO index (r = +0.62 for January) and SHI (r = -0.57 for
February). Following to the winter monsoon changes, the air
temperature has a tendency to increase.

Winter SST had similar changes as the air temperature, but its
fluctuations could be slightly distorted by occasional reasons
because the range of wither SST changes is very narrow.
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Mean month air temperature anomalies
in Vladivostok in January
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Rates of the SST tendency to warming are different for certain areas and seasons, and in some cases

Water: SST heightening

the trend is statistically insignificant, but it is always positive.

Interdecadal oscillations of SST are stronger than year-to-year fluctuations: SST grew until late 1990s
and was lower in the 2000s.

Trend to warming is stronger in the northern part of the Sea. Obviously, it is caused by the winter
monsoon weakening
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Water: Intermediate layer warming

Temperature of the Intermediate Water has positive trend in the last 3 decades.

It has also the interdecadal oscillations around the trend line with warming in the 1990s and
cooling in the 1980s and 2000s.

The main reason of both changes is change of winter SST southward from the Polar Front,
where IW forms, but temperature in the intermediate layer changes with a prominent lag (up to
3 years). 1 oo

Summer

0.00 | \/‘

T B S S S
1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

summer, 7-years smoothing

128'E 132'E 136°E 140°E 184°E

temperature anomaly, deg. C

—a— summer (VI-VII)

1.00 +
| Winter

Temperature anomalies in
the layer from thermocline to
200 m at the standard
section along 132° E for
summer (Jun.-Aug.) and
winter (Feb.-Apr.).

Linear trends for the last 3

i decades are shown

-1.00 S S S S S R
1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

winter, 7-years smoothing

0.00 +

temperature anomaly, deg. C

—o— winter (I-IV)



Warmer winter conditions cause the convection weakening, so now it ventilates the 400 m layer
instead of 1500-2000 m layer in the 1980s.

As a result, the Deep and Intermediate Water are well-separated now, in opposite to the times

before the 1990s when they were united in a common Japan Sea Proper Water mass.
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Nutrients: burial in the deep layer and lack in the active layer

Yury ZUENKO

Pacific Fisheries Research Center (TINRO), Viadivosiok, Russia
One-dimensional model of water productivity changes
because of convective regime reconstruction

poster prosentation on POC Papers Session of PICES 18™ Meeting; Jeju, Korea, October 2009

After the separation between the Deep and
Intermediate water masses, nutrients become to
bury in the deep layer, and their concentration in
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Nutrients: burial in the deep layer

After the separation between the Deep and Intermediate water masses, nutrients become to bury
in the deep layer, and their concentration in the convective layer theoretically becomes lower.
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Nutrients: lack in the active layer —
lower the nutrients, lower the production

Lowering the nutrients concentration in the euphotic layer causes the lowering of new primary
production (produced mainly in spring).

After convection weakening, the new production decrease gradually during two decades and
finally becomes twice lower.
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Logarithmed diatom cell number anomaly, Ig cell/liter

Phytoplankton: decadal oscillations, trend unclear
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Year-to years changes of diatom
abundance at PM-line (SE Japan/East
Sea) in spring (from: Tian et al., 2008).
Results of 5-years smoothing and linear
trend for 1973-2004 are shown, as well
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Phytoplankton
abundance in
spring has definite
decadal oscillations
coinciding with
temperature
changes: it is high
in “cold” decades
(1980s), low in
“‘warm” ones
(1990s), and
heightened again in
the 2000s. Long-
term tendency of
the phytoplankton
abundance is not
clear.

Monthly values of Ch a concentration at the sea surface in the deep-water
part of the Japan/East Sea in 1997-2012 (from the data of satellite SeaWiFS

and MODIS color scanners:

)


http://oceancolor.gsfc.nasa.gov/

Monthly Chl a concentration, mg/m3

Phytoplankton: decadal oscillations, trend unclear

Although the spring bloom became stronger in the last decade

(in conditions of stopped warming), the fall bloom became

weaker, and the mean annual concentration of Chl a does not

show any significant tendency.
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Monthly values of Ch a concentration at the sea surface
in the deep-water part of the Japan/East Sea in 1997-
2012 (from the data of satellite SeaWiFS and MODIS
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Mean annual Ch a concentration at the sea surface and its
concentration in the months of spring and fall blooms, averaged
for the whole deep-water part of the Japan/East Sea

(from the data of satellite-mounted SeaWiFS and MODIS color
scanners: )
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Zooplankton: no trend, decadal oscillations

Zooplankton biomass changes in accordance with both SST (the colder, the better)
and the Intermediate Water temperature (the warmer, the better). Recently, the
zooplankton abundance is high because of warming the Intermediate Water and
cooling at the sea surface. The zooplankton dynamics has no any significant trend.
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Zooplankton vs Phytoplankton: negative correlation!

Decadal oscillation of zooplankton biomass are opposite to the changes of spring
phytoplankton abundance. Of course, that does not mean that zooplankton “likes”
lack of food, but the reason is favorable conditions for zooplankton reproduction in

the years unfavorable for phytoplankton bloom.
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Zooplankton vs phytoplankton: grazing does not depend on the bloom

Ivlev approach is used usually in ecosystem modeling for grazing. Under this approach, the grazing
value depends on abundance of prey only in cases with low concentration of the prey, in other cases it
depends on abundance of predators only. Obviously, this approach is quite realistic in conditions of the
Japan/East Sea — that's why zooplankton does not depend on phytoplankton abundance during its

blooms.
o 100
L A ——. e Sl Uttt
SI(OH)4 t____‘ 38)Decomposition Opal ‘~L%‘ 37)Egestion ’, ZP S
AN AN \{%@ 73 /' i ¢
‘0 N NS * 139)Sinking z a @ ¢
“Bavdo, hCY v S
N Ny, & Y - £ ™ - <@ <o
Bl, % Y4 ' . S ~ ° °
NN G o_39geg ___ 7 | g = S o
Y 4 = o
R 2/ 19Grazing ' & < ® ~<
2)Photosynthesis s==== PL 34)Grazing IS 0 - ~ W0
= L - [=% ~ @
S ° o o0 9SG
N (4 ~ <o
5 ¢ o °.° %
=]
£ = ¢ o
i =
g [
o B :
; i & : 5 < R?=0.34
Photosynthesi > PS 12 g
3)Respiration S .\S 100 ; ; ; i ‘ ‘
N i
A&p H 2 . 0 2
0@{3 17)Excretion . § Anomaly of logarithmed diatom cell number, Ig cell/liter

27)Decomposition

Sy Correlation between zooplankton
biomass and phytoplankton abundance
in the SE Japan/East Sea (PM-line) in

i29)Sinking

Y

NEMURO prototype low-trophic model
(from: Kishi et al., 2006)

ZL @ — Predation —
Egestion — Excretion — Mortality

Nitrogen flow spring (all data from: Tian et al., 2008)

~q--~-=- Silicon flow

GraPL2ZLn = Max|0, GRmaprl exp(kgraL TMP)
x { 1 —exp(AL(PL2ZL* — PLn)) }ZLn]
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PL2ZL* = 0.04 micro mol N I-1 (Large zooplankton threshold value for grazing on PL)
PLn = large phytoplankton concentration, diatoms (micro mol N [-1)



Zooplankton: reproduction component is absent in ecosystem models

NPZD ecosystem models
usually have not any certain
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Nekton: species structure reconstruction

Species composition of nekton changed
fundamentally in the last several decades,
with replacement of dominant species.
Sardine dominated in 1980s, but common
squid dominates since the middle 1990s.

Generally, biomass of nekton is determined
by trophic status of dominant species: it
was very high in the period of planktivorous
sardine, but rather low in the period of
predatory common squid.
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Nekton: common squid 7odarodes pacificus

Abundance of common squid (as could be seen from its
annual landings) is well-correlated with zooplankton
abundance. Possibly, its reproduction depends on
zooplankton abundance (bottom-up control) or on the same
factors as the zooplankton abundance.
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Nekton: japanese sardine Sardinops melanostictus

Changes of the japanese sardine abundance (as
could be seen from its total annual landings) are
opposite to the decadal changes of zooplankton

abundance. Possibly, the zooplankton abundance

depends on the sardine grazing (top-down control)

or reproduction of sardine and zooplankton are

determined by opposite factors.
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Nekton: winners and losers

In the last three decades, the following key species of
fish and invertebrates have a prominent increasing of
their stocks in the Japan/East Sea:

- common squid (stabilized in the 2000s)

- yellowtail

- spanish mackerel

- japanese anchovy (retreated in the 2000s)
- jJack mackerel

- sailfin sandfish

-.pacific herring (southern population only)

The following species have prominent decreasing of
their stocks in the Japan/East Sea:

- pacific cod (partially restored in the 2000s)
- saffron cod (partially restored in the 2000s)
- walleye pollock

- japanese sardine



Year-class strength (2+ and elder)

Nekton: a case of japanese sardine

Huge fluctuation of the sardine stock have decadal scale; its reproduction has not any
significant relationship with the environmental changes of climate scale (warming).

The sardine reproduction began to worse before the climate shift in the late 1980s, and
some its strong generations appeared after the shift, in warm conditions of the late 1990s.

One of the most important conditions for successive reproduction of sardine is the match
of its larvae hatching with the spring blooming: they match if the peak of spawning occurs
in 15-36 lays before the peak of blooming.
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Nekton: winners and losers

In the last three decades, the following key species of
fish and invertebrates have a prominent increasing of
their stocks in the Japan/East Sea:

- common squid (stabilized in the 2000s)

- yellowtail

- spanish mackerel

- japanese anchovy (retreated in the 2000s)
- jJack mackerel

- sailfin sandfish

-.pacific herring (southern population only)
- jJapanese sardine

The following species have prominent decreasing of
their stocks in the Japan/East Sea:

- pacific cod (partially restored in the 2000s)
- saffron cod (partially restored in the 2000s)
- walleye pollock



Ecosystem: winners and loosers

In the last three decades, the Japan/East Sea ecosystem
had controversial changes caused by complicated influence
from its environments:

- Primary production decreasing (in model):
from 2.5t0 1.2 gC/m3in 2 decades

- Phytoplankton abundance decreasing (trend is not clear)

- Zooplankton abundance stability or increasing (trend is not significant):
+1 mg/m?3 per decade for the SE part

- Nekton biomass decreasing (because of sardine collapse,
but the biomass increasing for many species):
in 10 times after sardine collapse in the 1990s,
but trophic status is changed

These changes cannot be simulate by the ecosystem models based on the growth/grazing
balance, but reproduction should be taken into account.
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Ecosystem: growth of effectiveness after regime shift in the late 1980s

Thus, huge amount of phytoplankton is produced in the Japan/East
Sea in springs after cold winters, but it cannot be consumed by
zooplankton — the ecosystem works inefficiently. And it is generally
more effective in cases of warm winters, when spring bloom is
weaker and new production is utilized more rationally, though these
changes can affect negatively on some herbivorous species (as
winter-spawning ones).

Recent tendencies in the Japan/East Sea ecosystem could be
described as a transition from high-productive low-effective =
ecosystem of subpolar seas to low-productive high-effective one -
typical for subtropic waters. -

The ecosystem efficiency can be measured quantitatively as
a ratio between annual new primary production and annual
production of herbivorous zooplankton.

Quantitative estimation of the ecosystem efficiency
(for the deep-water northwestern Japan/East Sea):

Nekton
1980s 1990s 2000s

Annual new production (modeled; gC/m3yr) 2.5 14 2.1 ;l:"zo 0 p l an ktO n L..".."\

Mean annual biomass of zooplankton (with

correction to Jeday net catchability; WW, mg/m3) 832 850 644
Mean P/B-coefficient of zooplankton (a.GR,,,, day?) 0.12 0.12 0.12
Annual production of zooplankton (WW, g/m3yr) 36 37 28
Annual production of zooplankton (gC/m3yr) 1.3 1.3 1.0

Ratio Zooplankton / New Primary production
(coefficient of efficiency), % 52 93 48

Phytoplankton



http://www.megabook.ru/MObjects2/data/pict2004/biology/bio277.jpg

Conclusion

Physics: warming. Recent changes in the Japan/East Sea ecosystem are driven
mainly by winter warming in conditions of weak winter monsoon, in particular in the late
1980s, with partial retreat to cooling in the 2000s.

Chemistry: nutrients burial. Warm winter conditions prevent from active convective
mixing that impedes the overturn of nutrients and decreases the new production.

Phytoplankton: slight lowering. Loss of new production causes weakening of
phytoplankton spring blooms, though this effect is visible in decadal scale but is not
clear in climate scale.

Zooplankton: trend is not significant. Zooplankton abundance changes in opposite
to phytoplankton changes in decadal scale that could be explained by i) excessive
biomass of phytoplankton during its blooms, and ii) changes in the zooplankton
reproduction. The latter factor is not considered in ecosystem models. In the period of
high stock of sardine, the zooplankton abundance could be influenced by grazing from
sardine (top-down effect).

Nekton: warm-species increasing. Nekton reaction to climate change is
controversial: many species increase their abundance, but other ones decrease the
stock (mainly cold-water ones). However, the total biomass of nekton became in 10
times lower since the 1980s because of collapse of japanese sardine (theoretically, its
population could be recovered even in warm environments).

Ecosystem efficiency: heightening in “warm” conditions. Generally, the changes
in the Japan/East Sea ecosystem after the regime shift to warming in the late 1980s
could be described as a transition from high-productive low-effective ecosystem of
subpolar seas to low-productive high-effective one typical for subtropic waters.
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