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Role of this talk 
 
 
 
 
 
 
 
 
 
 
 

“This session brings together researchers of marine 
ecosystems, physical oceanography and climate to share 
ideas about what physical parameters and processes are 
important in understanding and predicting the response of 

specific marine ecosystems to climate forcing.” 
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Role of this talk 

Environmental windows for small pelagic fish 
in the western North Pacific: 

How do their vital parameters respond to 
climate variability and change? 

Objective is to show … 
1. How dramatically environmental variability could regulate 

survival probability of small pelagic fish 
• Introducing the “growth–survival” paradigm 

2. How differently the similar environmental condition could 
affect the population dynamics of different species. 

• Reviewing several hypotheses 
• Comparing responses of vital                              

parameters to environmental factors among multi-species 

Small pelagic fish in the 
Kuroshio Current system 
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Species alternations 

Long-term landing histories of small pelagic fish in waters around Japan in 
response to Pacific Decadal Oscillation (PDO). 
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Sardinops melanostictus 

Mantua et al. 
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Yatsu et al. 
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Species alternations 

Four different current systems 
 

 
 
 
 
 
 
 
 
 
 
 The patterns of species alternations tended 

to be synchronous among the Pan-Pacific 
regions and asynchronous between the Pan-
Pacific regions and the Benguela region. 

Anchovy Engraulis spp. 
Sardine Sardinops spp. 

Kuroshio 
Current 

Humboldt 
Current 

Benguela 
Current 

California 
Current 
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Key questions 

Why do even subtle environmental changes 
sometimes trigger dramatic alternations? 

Why do anchovy flourish and sardine collapse 
or vice versa under the same ocean regime? 

Concept: 
Differential responses of vital parameters to environmental 
factors constitute a key to understand biological processes 

linking climate variability to species alternations 
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Cascade 
Input 

Climate change 

Ocean regime 

Predator field 

Output 

Mortality rate 

“Growth–survival” 
paradigm 

in early life stages 
Growth rate = 

survival potential 

Predation rate 

Vital parameters 

Transport/migration 

Physical factors 

Biological factors 

Fishing 

Growth rate 
Spawning 

Condition etc. 

Population dynamics 

Amplifier 
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Role of this talk 

Environmental windows for small pelagic fish 
in the western North Pacific: 

How do their vital parameters respond to 
climate variability and change? 

Objective is to show … 
1. How dramatically environmental variability could regulate 

survival probability of small pelagic fish 
• Introducing the “growth–survival” paradigm 

2. How differently the similar environmental condition could 
affect the population dynamics of different species. 

• Reviewing several hypotheses 
• Comparing responses of vital                              

parameters to environmental factors among multi-species 

Small pelagic fish in the 
Kuroshio Current system 
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Paradigm/mechanisms 

“Growth–survival” paradigm in early life stages 
 
 
 
 
Functional mechanisms 
I. “Bigger is better” (Miller et al. 1988) 
       Growth rate determines somatic size influencing survival advantages. 

II. “Stage duration” (Chambers & Leggett 1987, Houde 1987) 
       Growth rate determines high mortality larval stage duration. 

III. “Growth-selective predation” (Takasuka et al. 2003, 2004, 2007) 
       Growth rate per se exerts direct impacts on predation mortality. 

Larger and/or faster growing individuals 
are more likely to survive than 

smaller and/or slower growing conspecifics. 

Why do they survive better? 

What’s the consequence of environmental variability? 
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Relationship of growth rate to temperature for Japanese anchovy larvae. 
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Stage duration mechanism 

Size-at-age of the metamorphosing larvae vs 
non-metamorphosing larvae of Japanese anchovy. 
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Growth decline: 
31% of the range 

Metamorphosis: 
6.5 days delay 

Cumulative 
survival probability 
during larval stage: 
multiplied by 9.8% 

Assuming 
mortality rate 
= 30% day–1 

survival rate 
= 70% day–1 

(0.70)6.5 = 0.098 

Consequence 
of 2ºC change: 

ca.10 times difference 
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9.8% against 100% 
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Field sampling 
 Japanese anchovy larvae and their potentially predatory 

fish were captured simultaneously by the same tows of a 
trawler in a coastal fishing ground. 

 
 
 
 
 
Growth comparison 

Title 
Growth-selective predation 

Fishing ground for 
anchovy larvae 

Sagami Bay 

Ingested larvae Original larvae 

The larvae 
actually 
ingested by 
the predators 

The surviving 
larvae from 
the original 
populations 

Otolith microstructure analysis 

Takasuka et al. (2003, 2004a,b, 2007) MEPS 
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Growth-selective predation 

Example of comparison of growth rate on standard length 
between ingested larvae and original larvae. 

10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

Standard length (mm)

G
ro
w
th
 ra
te
 (m
m
 d
ay

–1
) Ingested larvae

Original larvae

This is the clearest example. 
The similar results were 
obtained from 3 of 5 samples. 

Takasuka et al. (2003) MEPS 



Takasuka et al. Title 
Relative predation mortality 

Frequency distributions of growth rate compared between ingested larvae 
and original larvae with an index of relative predation mortality. 
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Cascade 
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Role of this talk 

Environmental windows for small pelagic fish 
in the western North Pacific: 

How do their vital parameters respond to 
climate variability and change? 

Objective is to show … 
1. How dramatically environmental variability could regulate 

survival probability of small pelagic fish 
• Introducing the “growth–survival” paradigm 

2. How differently the similar environmental condition could 
affect the population dynamics of different species. 

• Reviewing several hypotheses 
• Comparing responses of vital                              

parameters to environmental factors among multi-species 

Small pelagic fish in the 
Kuroshio Current system 
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Species alternation 

Long-term landing histories of small pelagic fish in waters around Japan in 
response to Pacific Decadal Oscillation (PDO). 
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Optimal growth temperatures 

Relationship between recent 3-day mean growth rates and sea surface 
temperature for anchovy and sardine larvae (Takasuka et al. 2007 CJFAS). 
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Hypothesis 

Conceptual framework of the “optimal growth temperature” hypothesis 
(Takasuka et al. 2007 CJFAS). 
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Spawning temperatures 

Similarities and differences in spawning temperature patterns represent 
those in the long-term population dynamics (Takasuka et al. 2008 MEPS). 
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Temperature & Food 

Relationships of growth rates to temperature and prey density for anchovy 
and sardine larvae and early juveniles in the Kuroshio–Oyashio transition 
region (Takahashi et al. 2009 CJFAS). 
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Trophic dissimilarity 

Conceptual framework of the “trophic dissimilarity” hypothesis from the 
Benguela Current system (van der Lingen et al. 2006 AJMS). 

Physical forcing 
(wind, etc.) 

Water column 
(temperature) 

Phytoplankton 
community 

Zooplankton 
community 

Pelagic fish 
community 

Highly stable 
(warm) 

Smaller cell (flagellate) 
Low biomass 

Smaller copepods 

Filter-feeder 
favored 

Intermittent mixing 
(upwelling, cool) 

Larger-cell (diatom) 
High biomass 

Larger copepods 

Particulate-feeder 
favored 

Anchovy Sardine 

Cool regime Warm regime 

Differential 
feeding strategies 
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Feeding habits 

Gill raker morphology also differed between anchovy and sardine in the 
Kuroshio Current system. However, there were not great differences in 
feeding habit during the early life stages. 
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Feeding habits of larvae and juveniles in 
Tosa Bay. 
Okazaki, Y., Kubota, H. et al. 
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Trophic similarity? 

 Strong trophic overlaps throughout the life histories among the species. 
 We conclude that anchovy and sardine are ecologically congeneric 

species in terms of trophic position in this region. 

Comparison of feeding habits and 
trophodynamics in the Kii Channel 
Yasue et al. (2011) MB, Yasue et al. (submitted) 
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Winter SST in KESA 

Relationships of natural mortality coefficient anomaly from postlarva to age 
1 to February SST (left) and February SST anomaly (right) in KESA for 
Japanese sardine (Noto & Yasuda 1999 CJFAS). 

Kuroshio Extension and its southern recirculation area (KESA) 

Cooler:   lower mortality = higher survival 
Warmer: higher mortality = lower survival SST anomaly 

Mortality 
coefficient 
anomaly 

1999 in CJFAS 
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Winter mixed layer depth 

Natural mortality coefficient anomaly from postlarva to age 1 of Japanese 
sardine vs February/March mixed layer depth, and spring phytoplankton 
density vs March mixed layer depth (Nishikawa & Yasuda 2008 FO). 

March mixed layer depth 

South Kuroshio 
Extension 

2008 in FO 

Mixed layer depth 
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Winter mixed layer depth 

Time series data of survival index (ln-transformed recruitment per 
spawning stock biomass: LNRPS) for Japanese sardine and February 
mixed layer depth around the Kuroshio axis (Nishikawa et al. 2011 FO). 

2011 in FO 

South of Japan/Kuroshio 
Extension (±0.5º from the axis) 

South of Japan 
(±0.5º from the axis) 

Kuroshio Extension 
(±0.5º from the axis) 

• Ocean general circulation 
model for the Earth 
Simulator (OFES) 

• “Kuroshio axis coordinates” 

Survival index 

MLD MLD MLD 
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Trophodynamics 

Trophodynamics hypothesis in the Kuroshio Current system (keys: winter 
mixed layer depth & spring plankton bloom in the nursery grounds). 

Physical forcing 

Water column 
(temperature) 
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community 

Zooplankton 
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Pelagic fish 
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Mixed layer depth 
shallower (warm) 

Less productive (?) 

Less productive (?) 

Low-biomass species 
(lower fluctuation) 

Mixed layer depth 
deeper (cool) in winter 

More productive 
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Species alternation 

Long-term landing histories of small pelagic fish in waters around Japan in 
response to Pacific Decadal Oscillation (PDO). 
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Spawning separation/overlap 

 
Examples of monthly egg abundance distributions of anchovy and sardine 
in the western North Pacific (Takasuka et al. 2008 MEPS). 
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Transport and environments 

Numerical particle-tracking experiments to examine the transport and 
variability in environmental temperature experienced by eggs and 
larvae of anchovy and sardine (Itoh et al. 2009 FO). 

2009 in FO 

• Ocean general circulation model 
for the earth simulator (OFES) 

• Observed distributions of eggs 
from 1978 to 2004 

Considering differences in spawning seasons/grounds Interannual variations of mean temperatures 
experienced during the transport processes 
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Role of this talk 

Environmental windows for small pelagic fish 
in the western North Pacific: 

How do their vital parameters respond to 
climate variability and change? 

Objective is to show … 
1. How dramatically environmental variability could regulate 

survival probability of small pelagic fish 
• Introducing the “growth–survival” paradigm 

2. How differently the similar environmental condition could 
affect the population dynamics of different species. 

• Reviewing several hypotheses 
• Comparing responses of vital                              

parameters to environmental factors among multi-species 

Small pelagic fish in the 
Kuroshio Current system 
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Egg survey data set 

Sampling stations in the monthly egg surveys off the Pacific coast of Japan 
from 1978 to 2007 (Oozeki et al. 2007 CalCOFI, Takasuka et al. 2008 MEPS). 

  Off the Pacific 
      coast of Japan 
 
  Last 30 years 

(1978–2007) 
 

  Vertical tows of  
      NORPAC net 
 
  114,130 samples 

A long-term data set of monthly egg surveys 

Japan 

Kuroshio Current system 
(western North Pacific) 
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GAMs 

  GAMs with multiple explanatory variables: 
  y  =  α  +  s (SST)  +  s (SSS)  +  s (ln(PL)) or s (ln(CH)) 
     y:  the estimated probability of egg occurrence from 0 to 1 
     α:  an intercept term 
     “s”:  an unique smooth term of thin plate regression spline base 

  Physical factors 
 Sea surface temperature (ºC): SST 
 Sea surface salinity: SSS 

  Biological factors 
 Zooplankton volume (ml m–2 or μg m–3): PL 
 Chlorophyll-a concentration (mg m–3): CH 

 Generalized additive models (GAMs) were fitted to egg  
 presence/absence (1/0) data with multiple variables. 

Spawning responses to multiple environmental factors 
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Spawning responses 

Effects of physical factors on spawning probability by the GAMs applied to 
egg occurrence data (1/0). 

Sea surface temperature 

Anchovy 
E. japonicus 

Sea surface salinity 

Anchovy 
E. japonicus 

Sardine 
S. melanostictus 

Kuroshio Current system 
All areas and seasons included 

Sardine 
S. melanostictus 
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Spawning responses 

Effects of biological factors on spawning probability by the GAMs applied to 
egg occurrence data (1/0). 

Kuroshio Current system 
All areas and seasons included 

Zooplankton volume 

Anchovy 
E. japonicus 

Sardine 
S. melanostictus 

Chlorophyll-a concentration 

Anchovy 
E. japonicus 

Sardine 
S. melanostictus 
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Income vs capital 
Energy allocation strategies for reproduction are viewed as 
a continuum between “income” and “capital” breeders. 

“Capital breeders” 
 Expend energy stored over long 

periods for reproduction 
       During spawning, … 
• Spawn irrespective of food 
• Stop feeding 
• Conditions dramatically decline 

 

“Income breeders” 
 Expend energy recently acquired 

for reproduction 
       During spawning, … 
• Spawn more with food 
• Keep feeding 
• Conditions do not dramatically 

change 

Sardine (S. melanostictus) 
 Spawning probability increased 

with food availability up to some 
extent but not at higher values. 

Anchovy (E. japonicus) 
 Spawning probability increased 

monotonically with food availability. 
 

On a continuum between “income” and “capital” 
Income 
breeder 

Capital 
breeder Anchovy 

(E. japonicus) 
Sardine sardine 

(S. melanostictus) 
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Temperature–salinity space 

 
 
Temperature–salinity 
space discriminated 
species-specific 
environmental windows 
for spawning among 
multi-species. 
 
 

Effects of physical factors on spawning probability by the GAMs applied to 
egg (or larval) occurrence data (1/0). 
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Energy allocation strategy 

Monotone 
increasing 

Breakpoint 
after increasing 

Breakpoint 
after increasing 

Monotone 
increasing 

Monotone 
increasing 

Small pelagic fish 
categorized by energy 
allocation strategy 
Almost “income”: 
  •  Anchovy 
  •  Mackerel 
  •  Jack mackerel 
More “capital”: 
  •  Sardine 
  •  Round herring 

Effects of zooplankton volume on spawning probability by the GAMs 
applied to egg occurrence data (1/0). 
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Summary & Future 

Summary 
1. How dramatically environmental variability could regulate 

survival probability of small pelagic fish 
 Vital parameters serve as an amplifier linking 

environmental variability to dramatic survival variability. 
2. How differently the similar environmental condition could 

affect the population dynamics of different species 
 Species-specific environmental windows would constitute a 

key to understand mechanisms of species alternations 
through differential climate effects on different species. 

Future 
 Different hypotheses should be synthesized in the future. 
 Interspecific and intersystem comparisons 
 Interdisciplinary collaboration 
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SUPRFISH 
Studies on Prediction 
and Application of Fish 
Species Alternation 
(SUPRFISH) 
Leader: Saito, H. (FRA) 
Period: 2007–2012 
 
 Interdisciplinary project 

including 60 scientists 
 4 major themes 
1. Physical oceanographic 

variations 
2. Lower food-web structure 
3. Physiological and 

ecological factors of fish 
4. Modeling approaches to 

species alternations and 
fisheries management. 
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Upcoming ICES/PICES Symposium 

November 12–14, 2011, Nantes, France 
Conveners: Stefan Neuenfeldt (DK), Myron Peck (DE), Tim Essington (US), 

Niels Vestergaard (DK), and Vladimir Radchenko (RU) 

http://www.facts-project.eu/Symposium2012.aspx 
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Thank you 

Thank you for your attention. 
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