Predation potential of blooming jellyfish, *Pelagia noctiluca*, on fish larvae in the NW Mediterranean Sea

Jennifer E. Purcell, Ana Sabatés, Verónica Fuentes, Francesc Pagès, Uxue Tilves, Alejandro Olariaga and Josep-María Gili

Institut de Ciencies del Mar (CSIC)Barcelona, Spain

Life cycle of *Pelagia*

No polyp stage: planula → ephyra → medusa

Pelagia is distributed worldwide

Is *Pelagia* also an important predator and competitor of fish?

Study of *Pelagia* distribution and feeding in the NW Mediterranean Sea (Sabatés et al. 2010. Hydrobiologia 645: 153-165.

Prey found in *Pelagia* ephyrae collected in 200-m vertical tows

Prey items	Shelf	Front	Open sea
Copepods	72 %	49 %	57 %
Other crustaceans	4 %	25 %	15 %
Molluscs	8 %	3 %	5 %
Siphonophores	4 %	1 %	2 %
Chaetognaths	4 %	6 %	2 %
Appendicularians		2 %	12 %
Fish larvae	8 %	12 %	5 %
Total number of prey	25	224	84

Pelagia ate various fish larvae

Fish larvae eaten	Shelf	Front	Open sea
Anchovy (Engraulis encrasicolus)		38 %	
Ceratoscopelus maderensis		21 %	
Hygophum benoiti	50 %	4 %	20 %
Lampanyctus crocodilus	50 %	8 %	60 %
Lampanyctus pusillus			20 %
Myctophum punctatum	—	4 %	
Vinciguerria sp.		4 %	
Sparidae		4 %	
Unidentified		17 %	
Total number of larvae in guts	2	26	5

Estimating feeding impacts from gut contents in combination with digestion rates

To calculate feeding rate:

prey in gut / digestion time = individual feeding rate = prey eaten time⁻¹

To calculate impact in sea, you also need the numbers of predators m⁻³ and prey m⁻³

#prey eaten time⁻¹ X #predators m⁻³ / #prey m⁻³ = impact

Impact = proportion of prey standing stock eaten time⁻¹
Sabatés et al. (2010) had gut contents, but we needed digestion times for *Pelagia*

Digestion and recognition times of *Pelagia* given one fish larva (mean)

Diameter D (mm)	No.	Fish larva length L (mm)	Digestion Time	Significant Regression Factors	Recognition Time
Medusae 25-110 (49 mm)	50	4–35 (6.8 mm)	0.3–9.0 h (2.5 h)	T °C p<0.001	0.2-5.8 h (1.2 h)
Ephyrae 4–22 (13.4 mm)	110	1.5–13 (5.9 mm)	0.3–8.3 h (2.5 h)	L p < 0.001 T °C p = 0.01 D p < 0.001	0.3-5.8 h (1.2 h)

Calculated impact of *Pelagia* on fish larvae in 1995

	Shelf	Front	Open sea
No. of fish larvae eaten	2	26	5
No. of ephyrae examined	145	4400	1135
No. of larvae in each	0.014	0.006	0.004
No. of larvae per m ³	1.000	0.700	0.100
No. of ephyrae per m ³	0.470	5.012	0.646
If used 2.5 h digestion time			
% larvae eaten per day	5.2 %	33.8 %	22.8 %
If used 1.2 h recognition time			
% larvae eaten per day	10.8 %	70.5 %	47.4 %

Current Fish-Jelly Project cruises 15 June-5 July 2011 and 20-24 June & 12-24 July 2012

NW Mediterranea n Sea

Collection of jellyfish for gut contents

Problems with plankton tow collection for gut content analyses

- Only small jellies
 (ephyrae, hydromedusae, ctenophores) can be used
- Some species spit out prey in the net
- •Some species eat prey in the net

Pelagia were collected for gut analysis by 'dipping' in 2011 and 2012

Pelagia ephyrae contained an amazing number of fish larvae and eggs

Comparison of net-collected and dipped ephyrae

	1995 (net)	2011 & 2012 (dip)
% ephyrae with prey	8 %	57 %
% ephyrae with fish larvae	7.5 %	14 %
% ephyrae with fish eggs	0 %	10 %

The potential predation on fish eggs and larvae is even greater than estimated from net samples

Jelly predators of fish eggs and larvae

Species	% eaten/d	Location	Reference
Siphonophores Rhizophysa	various 28 % larvae	Gulf of California	Purcell 1981
Physalia	60 % larvae	Gulf of Mexico	Purcell 1984
Hydromedusa Aequorea	herring <97 % larvae	Vancouver Island	Purcell 1989, 1990, 1991
Scyphomedusae Chrysaora Pelagia	anchovy 8-50 % eggs 10-54% larvae 5-70% larvae	Chesapeake Bay NWMediterranean	Purcell et al. 1994 This study
Ctenophore Mnemiopsis	1-44 % eggs 10-54% larvae	Chesapeake Bay	Purcell et al. 1994

But most species have not been studied!

190 species of scyphomedusae (Arai 1997)

20 species of cubomedusae (Mianzan & Cornelius 1999)

840 species of hydromedusae (Boullion & Boero 2000)

200 species of siphonophores (Pugh 1999)

150 species of ctenophores (Mianzan 1999)

