Monitoring seasonal variations in seagrass beds using acoustics method

Shiori Sonoki¹, Yuka Morita², Jun Shoji³ and Kazushi Miyashita²

1)Graduate School of Environmental Sciences, Hokkaido university 2)Field Science Center for Northern Biosphere, Graduate School of Environmental Sciences, Hokkaido University

³⁾Takehara Fisheries Research Station, Hiroshima University

Back ground

Sea forests

Community of seagrass or seaweed in shallow waters

Sea forests have high ecosystem services

Eelgrass (Zostera marina)

In Japan,

- Annual to perennial plants
- Distributed in inner bays from Hokkaido to Kyushu
- Sandy/clay seabeds at one to several meters depth

(Oomori, 2000)

Length • • • Max 120cm

Standing

Densit

width • • • 5 ~ 12mm

Seagrass beds contribute many function for ecosystem

Back ground

Ecosystem service of seagrass bed is <u>underestimated</u>

(Shoji,2001)

Large seasonal variations in distributions

Many seasonal difference among function, biota and biomass

(Kamimura et al., 2009)

<u>Decrease</u> in seagrass bed

Sea forests has disappeared 40% during 1978 to 2007

(Fisheries Agency, Fishiries white book 2008)

Back ground

- Quantifying ecosystem services of seagrass bed
- ◆ Measuring the correct value

Determine the biomass of seagrass bed

- Surface area
- density
- volume

Methods for estimating the distributions in the past

- Quadrats method
- Visual observation by dives
- Aerial survey

and more...

- Too much effort and time consuming
- Deterioration of estimation accuracy

Need for more simple methods to cover large area

Objectives

Acoustic methods

Quickly and quantitatively estimates biomass

In seagrass beds,

Quantify distributions and test seasonal variation

 Examine and evaluate ecosystem services using estimated biomass

Materials and Methods

Survey area

Northern and Eastern side of Ikunojima island (area2.26km) off Takehara City, Hirosima

Have many study and knowledge of ecosystem of seagrass bed

e.g. Fish biomass, biota of sea forest (Hirai et al., 2009 and Kinoshita et al., 2012)

Survey dates

2011/11/26 (Autumn) 2012/5/23 (Spring)

Vessel used
 Karanusu-maru

(Hiroshima Univ. 2.2t)

Materials and Methods

- Small quantitative echosounder KCE-300(kaijo sonic
- corporation,120kHz)Vessel speed, 3knots
- Deploy ROV(Pro3,VideoRay) where detections observed
 Identify species and growth condition
- Physical oceanography monitoring with CTD

Echo View (Myriax software Pty Ltd, ver, 4.9)

Extraction seagrass beds

Position, seagrass heights, bed's structures and reflected intensity

Arc GIS (ESRI corporation, ver, 10)

Mapping height of seagrass beds

Interpolating using Kriging

Estimating distribution area

Results: Echosounder and ROV

Results: heights of seagrass beds

Autumn	North	East	
Mean(m)	0.33	0.28	

Spring	North	East
Mean(m)	1.40	0.67

(m)

Results: Distribution area of seagrass bed

Autumn	North	East
Area(km²)	0.18	0.19
Percentage(%)	92.36	61.35

Spring	North	East
Area(km²)	0.25	0.06
Percentage(%)	81.27	45.21

- Height of Seagrass beds
- Distribution and its surface area

Quantified a part of biomass

Discussion

	height(m)	percentage(%)
Autumn	0.31	73.28%
Spring	1.04	70.26%

Autumn: declining period

Spring: growth period

Perennial eelgrass around survey area

Distribution stable throughout a year

Quantified seasonal variations of seagrass beds and verified with previous knowledge

Discussion

Acoustic data of seagrass beds using echosounder

Quantify seasonal ecosystem services

e.g. • Nitrogen fixation • Photosynthesis• Fish biomass • Fish production

Discussion

e.g. Quantify interim oxygen production

Oxygen production per unit hour eelgrass dry weight (Apparent photosynthesis)

117.3 μ mol O₂ g⁻¹ dry weight h⁻¹ (Caffrey and Kemp, 1991)

	Autumn	Spring
Oxygen production per unit area/day (g ⁻¹ m ⁻² day ⁻¹)	13.53	45.38

Oxygen production per day/distribution area (t)

Autumn	Spring
0.33	1.40

Quantified part of supporting services

Quantify other services

Thanks to

Sadaharu Iwasaki, Yasuhiro Kamimura, Yusuke Chiba, Miho Naka, Atsushi Fukuda, Hikaru Nakano, Yuhei Ogino, Takuya Kuwahara (Hiroshima Univ.)

Yusuke Ito

Associate professor, Hiroki Yasuma (Hokkaido Univ.)

Laboratory of Marine Ecosystem Change Analysis, Graduate School of Environmental Sciences, Hokkaido University