LONG-TERM TREND OF HARMFUL ALGAL BLOOMS AND ENVIRONMENTAL FACTORS IN THE SETO INLAND SEA OF JAPAN

TETSUYA NISHIKAWA, ICHIRO IMAI, SETSUKO SAKAMOTO

Fisheries Technology Institute, Hyogo Prefecture

Hokkaido University

Occurrences of red tides in the Seto Inland Sea

Countermeasure for eutrophication

Special law (enacted in 1973)

"Law Concerning Special Measures for Conservation of the Environment of the Seto Inland Sea"

- → Total Pollutant Load Control Reduce the total quantity of organic pollutants in term of COD
- Controls of total P input (from 1979)
- -Controls of total N input (from 1996)

Representative organisms of noxious red tide in the Seto Inland Sea

Chattonella spp.

Heterosigma akashiwo

Cochlodinium polykrikoides

Karenia mikimotoi

Heterocapsa circularisquama

Harima-Nada, Eastern part of Seto Inland Sea

Incidence of red tide outbreaks of *Chattonella* spp. and fisheries damaged from 1972 to 2016 in Harima-Nada

Year	Maximum cell density	Fish damaged	Amount of loss
	(cells ml⁻¹)		(1,000 yen)
1972	1,500	Yellowtail	7,137,564
1977	3,160	Yellowtail	2,970,000
1978	8,655	Yellowtail	3,277,269
1979	14,500	Yellowtail, Red sea bream	340,508
1982	7,517	Yellowtail	768,288
1983	13,550	Yellowtail, Conger eel, Darkbanded rockfish, etc	54,032
1986	385	Yellowtail	101,600
1987	1,030	Yellowtail, Black porgy, Gizzard shad, Flatfish, Darkbanded rockfish, Striped mullet	1,628,450
1999	5,500	-	-
2000	95	-	-
2002	14,200	-	- 0
2003	5,200	Yellowtail, Greater amberjack	1,155,177
2008	317	-	(0)
2011	180	-	

- : Data unknown

Analysis of the dynamics on Chattonella spp.

(by Fisheries Technology Institute, Hyogo Pref.)

- -Location: 19 sampling stations in Harima-Nada
- -Period: 1973-2008 (36-years)
- Month: July-August
- Items :
 - 1) Water temperature, nutrients concentration (3 layers: 0, 5 or 10 m, B-1 m)
 - 2) Cell density of Chattonella spp.* (surface)
 - *: Chattonella antiqua, Chattonella marina and Chattonella ovata

Long-term changes in the <u>cell densities</u> of *Chattonella* spp. in **July** from 1973 to 2008

(mean at 19 sampling stations in the surface layer of Harima-Nada)

Long-term changes in the <u>cell densities</u> of Chattonella spp. in August from 1973 to 2008 (mean at 19 sampling stations in the surface layer of Harima-Nada)

Cell density (cells ml⁻¹ August Warning level for mass mortality of cultured fish Year

Long-term changes in **DIN concentrations** in **July and August** from 1973 to 2008

(mean at 19 sampling stations in Harima-Nada)

Long-term changes in <u>water temperature</u> in **July** from 1973 to 2008

(mean at 19 sampling stations in Harima-Nada)

Year

Schematic representation of the annual life cycle of Chattonella in the Seto Inland Sea

(including vegetative and cyst phases, with bottom water temperature)

Horizontal distributions of <u>cell density</u> of *Chattonella* spp. in August (before 1996) (at 19 sampling stations in the surface layer of Harima-Nada)

Horizontal distributions of cell density of *Chattonella* spp. in July (after 1996)

(at 19 sampling stations in the surface layer of Harima-Nada)

Large-rivers discharge into Harima-Nada

1 Kakogawa 2 Ichikawa 3 Ibogawa Chigusagawa

Summary

Long-term changes in Chattonella spp. in Harima-Nada

- From the1970s to 1980s (high nutrient levels)
 - \rightarrow High cell density, large-scale and prolonged red tide

Regulation by law and technical development contributed to decrease nutrients inputs

- •After 1996
- Low nutrient levels
 - → Cell density and spatial scale of the distribution have become lower and smaller
- Increase in water temperature
 - → Earlier occurrence for several weeks
 - $\rightarrow\,$ Frequency of small blooms increased in July

Thank you for your attention.