Modelled Growth and Development of *Euphausia* pacifica in the Northern California Current

Hal Batchelder¹, Brie Lindsey¹, Enrique Curchitser² and William T. Peterson³

¹Oregon State University
²Rutgers University
³Northwest Fisheries Science Center, NOAA

Approach

Demonstrative Modeling: Modeling to explore whether a hypothesized mechanism might explain an observation. Mathematical articulation of an

hypothesis.

Adult *E. pacifica* rarely observed nearshore in net or acoustic sampling in the Oregon upwelling system.

E. pacifica egg abundances similar at 5, 15 and 25 miles from shore.

Feinberg and Peterson, unpubl.

The modeling approach

Develop an individual-based bioenergetics model

Use particle tracking to couple the IBM with ROMS physical fields (temperature; u-, v-, and w-velocities) and food fields from observations by GLOBEC in 2000 and 2002

Explore the influence of different euphausiid behaviors on retention, growth, and development:

- fixed-depth transport
- passive transport
- ontogenetically-based diel-vertical migration

A Different Type of Model: Bioenergetics

A Different Type of Model: Bioenergetics

Nauplius (1 - 2) – oval unsegmented body, no compound eyes, 3 pairs of appendages (which ultimately become the 2 pairs of antennae and 1 pair of mouthparts)

Metanauplius – body divided into two parts

Calyptopus (1 – 3) – body clearly divided into cephalothorax and abdomen, which begins to segment; compound eyes begin to form; antennae and mouthpart appendages present; first feeding stage in *E. pacifica*

Furcilia (1 – 7) – compound eyes developed, antennae still used for swimming, thoracic legs and abdominal pleopods begin to develop

Juvenile – all limbs developed, but not yet full sized or sexually mature; strong swimmers

Adult - reproductively mature

Developing the Bioenergetics Model

There are some aspects of population dynamics that are poorly constrained. Behavior and mortality rates are examples.

We have to rely on:

Parameters found in the literature

Our own lab work (Thank you, Peterson group!)

Field observations

Inferences, educated guesses, and assumptions

Developing the Bioenergetics Model

Stage-specific relationships

- Respiration allometric relationship based on Robin Ross' $R=lpha W^b$
 - Includes a basal (fixed) cost component and a variable component related to consumption/activity
- Growth allometric, based on Ross (1982)
 - Depends primarily on <u>food</u>
- Development Stage-based, Belehradek curve
 - Depends primarily on <u>temperature</u>

Start with C1 (first feeding) stage of 3 µg C.

Developing the Bioenergetics Model

E. pacifica Belehradek function for time to stage as function of temperature

Basic Form is:

$$D_i = a_i (T + b)^c$$

D_i is the time (days) from egg to stage i

a; is a stage specific constant

b is a stage-independent shift in temperature

c is assumed to be -2.05 (commonly observed from experiments; determines the curvature)

NEP ROMS Implementation

Domain: 20 - 73N, 115 - 210E

ROMS: 226 × 642 × 42 gridpoints on curvilinear grid (10 km horiz. res.)

Subdaily (6 hr) T42 (2.8°) CORE wind and fluxes (Large and Yeager)

Initial/boundary conditions provided by CCSM-POP hindcast model

Forward run for 1958-2004—includes multiple El Nino's, Regime Shifts, and 2002 cold intrusion

Product: Daily averaged physical snapshots of velocity, temperature, etc.

Authors thank Kate Hedstrom (UAF) for providing these model fields.

Food fields (Phytoplankton)

SEASOAR (chlorophyll) observations from US GLOBEC Cruises

Fixed Location - Growth (No Advection)

1-m Depth - Individual weight (µg C)

Fixed Location - Growth (No Advection)

41-m Depth - Individual weight (µg C)

<u>Fixed Location – Development (No Advection)</u>

1-m Depth

Mid-July 2002

Days required to develop: $C1 \rightarrow C2 \rightarrow C3 \rightarrow F1 \rightarrow ... \rightarrow F5$

<u>Fixed Location – Development (No Advection)</u>

23-m Depth

Mid-July 2002

Days required to develop: $C1 \rightarrow C2 \rightarrow C3 \rightarrow F1 \rightarrow ... \rightarrow F5$

Fixed Depth - Horizontal Advection

5-m: all particles moved offshore rapidly

35-m and 85-m: less offshore movement; some recirculation; more southward transport;

ALL: two off-shelf eddies draw particles off shelf; once entrained in eddy, retained there.

Fixed Depth - Horizontal Advection

A-Initial location offshore B-Very Nearshore C-Just offshore of Heceta Bank

Fixed Depth - Horizontal Advection

Euphausia pacifica off the Oregon Coast

Stage-based differences in vertical migration extent (schematic based on Vance et al, 2002)

Advection + Stage Dependent DVM

70-d trajectories

Trajectories not that different from trajectories obtained with fixed 35-m depth.

Orange-yellow near surface; blues/purples near 100 m.

Horiz. Advect only or Advection + Stage Dependent DVM

Our results so far...

- It is hard to get eggs onto the shelf without also having the females on the shelf. Egg development times are ca. 3 days at temperatures common to Oregon shelf. Possible explanations or contributing factors are:
- The NEP model is not high enough resolution to adequately represent upwelling, the upwelling jet, and the opposed onshore-offshore flows.
- 2. The eggs are deeper than we think. Eggs in the surface layer are difficult to transport toward shore, except during brief wind relaxations. Eggs layed at depths of 100-150m near the shelf break could be moved onshore during upwelling periods. - Not likely!
- We have ignored diffusive transports. Diffusion is important to retention of nearshore meroplankton (Batchelder, 2006).

The very <u>weak coupling of growth and development</u>, without considering mortality, leads to <u>rapid development even when growth is poor</u> (or negative). We have not yet considered the plasticity of larval development in euphausiids (Feinberg et al. 2006; others). Nor have we included data on non-chl prey. Future modeling will include OPC observations, diffusion, and higher (3 km) resolution model products. We will also use BITT modeling to examine sources, rather than destinations of individuals.

Acknowledgements

US GLOBEC, NOAA and NSF for funding

J. Barth, T. Cowles, L. Feinberg, T. Shaw for unpublished data.

K. Hedstrom for model products.

The many authors of published *E. pacifica* papers.

Krill logo from Jaime Gomez-Gutierrez web site

