

Climate-related decadal dynamics in Baltic Sea zooplankton: Interactive and additive effects of bottom-up and top-down controls

Saskia A. Otto, Rabea Diekman, Georg Kornilovs, Lutz Postel, and Christian Möllmann

Introduction

- Central Baltic ecosystem has experienced pronounced changes in structure and function ("Regime Shift") on all trophic levels in late 80s
- Intiated by climate-induced changes in the abiotic environment
- Stabilized by high fishing mortality on top predator cod (Gadus morhua) and top-down cascading effects:

Zooplankton was a major player in these changes

Introduction – Species Characteristics

- **ACARTIA**
- mainly A. bifilosa / A. longiremis
- brackish-water species
- thermophilic

- P. acuspes
- arctic relict species
- inhabits halocline region
- dominant species in winter
- main prey species for planktivorous fish

summer thermocline (~ 20m)

- euryhaline, neritic species
- thermophilic
- lives in colder, more saline waters than Acartia (mainly in or below thermocline)
- prey species for planktivorous fish

Fotos: www.eol.org

Aim of the study

- Analyse inter-annual dynamics of main zooplankton species using
 - a long data set (1960 2008)
 - a more spatially resolved data set covering all three sub- regions of the Central Baltic Sea (Bornholm Basin, Gdansk Deep and Gotland Basin)
- Identify additive and interactive effects of climate and foodweb effects (i.e. bottom-up and top-down controls) using
 - Generalized Additive Models (GAMs)
 - Threshold Generalized Additive Models (TGAMs)

Study Area & Combinations of Time Series

Study Area & Combinations of Time Series

Latvian dataset	German dataset		
(BIOR)	(IOW)		
1960-2008	1979-2008		
Juday net (mesh size 160 µm)	WP-2 (mesh size 100 µm)		
1 sampling / season	1-6 samplings / season		
1-10 stations per basin	1 station (Bornholm basin)		

Study Area & Combinations of Time Series

Latvian dataset	German dataset
(BIOR)	(IOW)
1960-2008	1979-2008
Juday net (mesh size 160 µm)	WP-2 (mesh size 100 μm)
1 sampling / season	1-6 samplings / season
1-10 stations per basin	1 station (Bornholm basin)

- Average of species abundances (N* m⁻³ of C1-C6) per basin / season / year
- Overlapping years → calculation of weighted annual means from log10(x+1) transformed annual mean abundances of each time series and back-transformation to original abundances
- Modelled variable: log-transformed anomalies (Mackas & Beaugrand, 2010)
 A'(t) = log[A(t)] log[Ā] = log[A(t) / Ā]

Variable Selection

Based on <u>prior knowledge and an explorative correlation analysis</u> seasons and abiotic / biotic predictor variables were identified:

A = Acartia spp., T = Temora longicornis, P = Pseudocalanus acuspes

Spring: A, T Winter: P

- <u>Local climate index:</u> Baltic Sea Index (BSI) (Dec-March mean)
 (A, T, P)
- Temperature: seasonal mean value per basin and depth stratum
 (A, T)
- Salinity: seasonal mean value per basin and depth stratum (T, P)
- Predation Index (PI): based on annual mean of cod spawning stock biomass as an indirect index of predation pressure (T, P)

Variable Selection

 Predation Index (PI): annual mean of cod spawning stock biomass as an indirect index of predation pressure (T, P)

Statistical Models

Generalized Additive Models (GAM)

- cope with non-linear patterns
- smoothing function links response and explanatory variable
- correlation structures included when models indicated autocorrelation

$$P.a._{by}^{s} = \alpha + Ba \sin_{y} + f_{b}(BSI_{y}) + g_{b}(S_{y}^{s}) + j_{b}(PI_{y}) + \varepsilon_{by}^{s}$$

Indices: s=season, b=basin, y=year *f*, *g*, and *j*: individual smoother

Statistical Models

Generalized Additive Models (GAM)

- cope with non-linear patterns
- smoothing function links response and explanatory variable
- correlation structures included when models indicated autocorrelation

Threshold GAM (TGAM)

- modified GAM formulation
- allows for 2 different effects below / above threshold of predation
- threshold is estimated from the data
- see also Ciannelli et al. (2004)

$$P.a._{y}^{s} = \left\{\alpha + \frac{f_{1}(BSI_{y}) + g_{1}(S_{y}^{s}) + j_{1}(PI_{y}) + \varepsilon_{y}^{s}}{f_{2}(BSI_{y}) + g_{2}(S_{y}^{s}) + j_{2}(PI_{y}) + \varepsilon_{y}^{s}} \right. \text{ otherwise}$$

Results – Long-term Trends

No significant BASIN effect!

Model Results – *Acartia* spp.

Species	Model	Predictors	explained dev. (%)	GCV	gCV
A. spp.	GAM	BSI + T	37.3	0.219	
	GAMM	BSI + T	29.5		

Auto-Correlation Function

Model Results – *Acartia* spp.

Species	Model	Predictors	explained dev. (%)	GCV	gCV
A. spp.	GAM	BSI + T	37.3	0.219	
	GAMM	BSI + T	29.5		

Auto-Correlation Function - GAMM

Model Results – *Temora longicornis*

Species	Model	Predictors	explained dev. (%)	GCV	gCV
T. longicornis	GAM	BSI + S + PI	55.7	0.291	0.5613
	TGAM	BSI + S + PI	65.7	0.234	0.647

Model Results – Pseudocalanus acuspes

Species	Model	Predictors	explained dev. (%)	GCV	gCV
P. acuspes	GAM	S + PI	44.8	0.084	0.319
	TGAM	BSI + S + PI	53.8	0.074	0.296

Model Results – Pseudocalanus acuspes

Species	Model	Predictors	explained dev. (%)	GCV	gCV
P. acuspes	GAM	S + PI	44 8	0 084	0 319
,	TGAM	BSI + S + PI	53.8	0.074	0.296

LOW predation pressure

HIGH predation pressure

Summary

- no "basin-effect" spatially homogenuous trends
 - combination of two datasets increased sample size
- strong stratification/vertical habitat segregation causes species-specific responses to the environment
 - "climate effect" through <u>temperature</u> important near surface (A)
 - "climate effect" through <u>salinity</u> important deeper in the water column (T,P)
 - importance of "cascade (<u>predation</u>) effect" depends on vertical overlap with planktivorous fish (P)
- climate and predation effect interact relative importance of bottom-up and top-down control can change

References

- Cianelli, L., Chan, K.-S., Bailey, K.M., and N.C. Stenseth (2004): Nonadditive effects of the environment on the survival of a large marine fish population.
 Ecology 85: 3418-3427
- Hastie, T.J. and R.J. Tibshirani (1990): Generalized additive models. Chapman and Hall/CRC, 352 pp.
- Mackas, D.L. and G. Beaugrand (2010): Comparisons of zooplankton time series.
 Journal of Marine Systems 79: 286.304
- Wood, S.N. (2006): Generalized additive models: An introduction with R.
 Chapman and Hall/CRC, 392 pp.

Thank You!

