The physical characteristics of the Baltic Sea might act as a bottleneck for the *Mnemiopsis leidyi* population expansion in this newly invaded area

Cornelia Jaspers, Thomas Kiørboe, Kajsa Tönnesson & Matilda Haraldsson
5th International Zooplankton Production Symposium
14.3.2011 Pucón, Chile

Invasion history of *Mnemiopsis*

Mnemiopsis leidyi

First observed 2005 in northern European waters (Oliveira 2007)

Mnemiopsis invasion route

Reusch et al. 2010 (Mol. Ecol.)

Fecundity

Egg production is high and maximum rates are reported

- 14 000 eggs day⁻¹ US (Kremer, 1976)
- 12 000 eggs day⁻¹ Black Sea (Zaika & Revkov, 1994)
- 12 000 eggs day⁻¹ Kattegat (Jaspers p.obs.)

Furthermore

- Hermaphrodites
- 24-48 hours from fertilisation to hatching
- Disoogenie (larval reproduction) (Chung 1892, Martindale 1987)

Egg production

Egg production in *Mnemiopsis* has been shown to vary with (Kremer,1976; Reeve et al., 1989; Purcell et al. 2001)

- Size
- Food availability
- Temperature
- Production is regarded as highly sensitive to food environment
- 2-4 days of starvation leads to a cessation of egg production (Båmstedt in Purcell et al. 2001)

What does this mean for the Baltic Sea?

What does this mean for the Baltic Sea?

Objectives:

Understand the *in situ* reproduction rates of *Mnemiopsis* in the Baltic Sea

Hydrography

Investigation area

Size dependent egg production

Size dependent egg production

Size dependent egg production

Egg production in the Southern Baltic at 12 ± 1.5°C

Size dependent egg production

Egg production in the Southern Baltic at 12 ± 1.5 °C (R²=0.27, p=0.0002)

Egg production rates

Kattegat vs. Southern Baltic

Slopes of Kattegat versus Southern Baltic egg production rates differ significantly (p=0.0007, F_{1.95}=12.28)

Volume specific egg production

Volume specific egg production

Egg production varies significantly between high saline Kattegat 20±17 and low saline S. Baltic 3.0±2.5 (t=6.77, DF=97, p<0.0001).

Summary I

In situ egg production rates Mnemiopsis leidyi

- Similar temperatures
- Salinity differs
 - 21-29 (Kattegat)
 - 7-9 (Baltic)
- Egg production rates are significantly higher in the higher saline Kattegat

⇒ How does the community composition look like in both areas?

Mnemiopsis leidyi abundance m⁻³

Depth distribution: Accumulation in the surface (20 m)

Mnemiopsis leidyi abundance m⁻³

Depth distribution: Accumulation in the surface (20 m)

Higher active recruitment in the Kattegat

Potential egg production Mnemiopsis leidyi

Potential egg production Mnemiopsis leidyi

Potential population egg production higher in the high saline Kattegat

Potential egg production Mnemiopsis leidyi

Potential population egg production higher in the high saline Kattegat

Summary II

- Factor 10 higher abundances in Kattegat
- Higher fraction of small sized animals in the Kattegat => recruitment
- Higher potential population reproduction in the Kattegat

⇒ How does the food composition compare?

Zooplankton standing stock: 5 fold difference

Total zooplankton carbon from lengths (90µm samples), averaged

Zooplankton standing stock: 5 fold difference

Total zooplankton carbon from lengths (90µm samples), averaged

Zooplankton production: 5.5 fold difference

Zooplankton mortality: due to *Mnemiopsis*

Baltic

Kattegat

Zooplankton Chl a concentrations

Summary III

Zooplankton standing stock Mnemiopsis leidyi

 Zooplankton standing stock 5 times higher in the Baltic, but *Mnemiopsis* reproduction rates are much lower

Summary III

 Zooplankton standing stock 5 times higher in the Baltic, but *Mnemiopsis* reproduction rates are much lower

Conclusion:

⇒ Salinity acts on the reproductive output of *Mnemiopsis* in the Baltic Sea

Mortality

Egg morality rates

"Back of the envelope" calculation (assuming steady state): μ(d⁻¹)= (egg prod.m⁻² d⁻¹/egg obs.m⁻²) - 1/egg hatching time d⁻¹

High mortality rates in both areas, but 3 times higher in the Kattegat than Southern Baltic. Abundance and size distribution suggest that the recruitment success is higher in the Kattegat even though eggs face higher mortality rates.

Outlook

Can *M. leidyi* sustain a population in the Baltic?

- ⇒ Salinity might constrain population expansion under current situation in the central Baltic Sea
- ⇒ M. leidyi population in the Baltic is probably sourced from Kattegat
- ⇒ Mnemiopsis population in the Baltic depends on drift of animals from high reproduction area - Kattegat

Temporal and spatial *M. leidyi* abundance in the Kattegat & Baltic: Poster Haraldsson et al. GP: 7157

Collaborators & Funding

Acknowledgements...

BAZOOCA Team

(Baltic ZOOplankton Cascades)

Technical University of Denmark

National Institute of Aquatic Resources

Danish Agency for Science Technology and Innovation

Ministry of Science Technology and Innovation

BAZOOCA

