Life history of *Euphausia pacifica* in the northern California Current: what can be learned by contrasting field and laboratory studies

Leah Feinberg¹, Tracy Shaw¹, Bill Peterson², and Hongsheng Bi³

¹Cooperative Institute for Marine Resources Studies, Oregon State University, Newport, OR, U.S.A., leah.feinberg@oregonstate.edu
²NOAA-NWFSC, Newport, OR, U.S.A.

³Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD 20688, U.S.A.

Background

- Rare opportunity to study euphausiids!
- 15 years, bi-weekly time-series of zooplankton and hydrographic data off Newport, Oregon, USA
 - Day time vertical nets (200μm)
 - Night time bongo nets (333μm) since 2001
- 11 years of experimental work on euphausiids in the northern California Current
 - Development
 - Growth
 - Reproduction
 - Feeding
- Thanks to GLOBEC NEP, ONR, NASA, NSF, SAIP, NOAA-NWFSC and the persistence of Bill Peterson

Meet Euphausia pacifica

Development

- Raised 4 broods of eggs spawned within hours
- Furcilia development monitored in individual jars
- Median time to Juvenile ~2 months at 10.5°C
 -Feinberg et al. 2006

Development Time (days) at 10.5°C

Stage	Median	Range in stage (total days)
Nauplius 1	0.3	0 - 4.0 (4)
Nauplius 2	1.1	1.0 - 7.1 (6.1)
Metanauplius	3.0	1.0 - 7.5 (6.5)
Calyptopis 1	6.4	5.5 - 20.6 (15.1)
Calyptopis 2	14.1	10.1 - 23.1 (13.1)
Calyptopis 3	17.8	13.5 - 26.1 (12.6)
Furcilia I	21.3	17.1 – 36.2 (19.1)
Furcilia II	26.7	19.6 – 43.6 (24)
Furcilia III	32.4	22.5 - 58.2 (35.7)
Furcilia IV/V	43.4	27.1 - 67.1 (40)
Furcilia VI	51.0	33.2 – 75.2 (42)
Furcilia VII	55.4	36.7 – 75.0 (38.3)
Juvenile	58.4	40.6 - 180+

~7

~14

~21

~40

Growth

- Adult euphausiids continue to molt regularly and can grow, shrink or stay the same size with each molt
 - Size is not a good indicator of age

To measure growth:

- Cohort Analysis (Modal Progression)
 - Repeated sampling of a field population over regular intervals
 - Night sampling since 2001
- Instantaneous Growth Rate (IGR)
 - Incubations of individual animals to determine inter-molt period and molt increment (mm)
 - 48 hr incubations at 10°C starting in 2000

Cohort Data 2003

- Traditional cohort analysis subjective with size modes identified by eye
- Now use maximum likelihood method in MatLab
- Identified at least 17 cohorts from 2001-2008 with long-term growth rates of 0.015-0.034mm d⁻¹

Cohort and IGR Growth Rates

Mean adult rates: Cohort = 0.05mm d⁻¹ IGR = 0.02mm d⁻¹

- •Both methods show a range in growth rates from ~+0.3 to -0.15mm day⁻¹
- •Cohort growth rates (red) show that growth tends to slow as animals reach maturity
- •IGR growth rates (gray) show range of individual variability in growth

Growth

- Cohort analysis allows a view of population level growth
- Cohort weaknesses: influenced by size-specific mortality, cohorts can pile up and get "lost", assumes that the same population is being sampled repeatedly, underestimates negative growth
- IGR highlights individual variability in growth, and a shorter time-scale
- IGR weaknesses: assumes molting is not synchronous or influenced by incubation, bias towards larger animals
- 2 methods of calculating growth are a good confirmation of each other and they allow us to know when a rate is reasonable

Longevity and Age at Spawning

- Most juveniles and adults were > 100 days but < 1 yr
- *E. pacifica* appears to live no more than two years in the North East Pacific
- Females spawn in multiple age and size classes

Age estimated using lipofuscin accumulation rate from lab reared animals Harvey et al. 2010

Reproduction

- E. pacifica are broadcast spawners, capable of spawning multiple times
- Goal of studying reproduction is to determine fecundity
 - Brood size
 - Inter-brood Period (IBP)
 - Duration of the spawning season
- We can look at these factors from field data, laboratory experiments, and ultimately a combination of the two
- Field: biweekly sampling of eggs, larvae and adults
- Laboratory Experiments: 48h brood size incubations, long-term (3-9 month) fecundity incubations

Chlorophyll a

- The northern California Current has strong seasonal (May-Sep) upwelling
- Peaks in surface chlorophyll a concentrations on the Oregon shelf are largely associated with upwelling
- Similar pattern in most years, but interannual variability in timing and magnitude of upwelling and phytoplankton blooms

Reproduction (field data)

- 11 years of bi-weekly vertical net data from NH15, an outer shelf station where *E. pacifica* larvae are most dense (same station as chl *a* figure)
- Seasonal pattern of egg densities dictated by upwelling and chl a
- Helps us to define the spawning season and to investigate the likelihood of continuous vs. intermittent spawning during the season

Reproduction (field data)

NH15 1996-2006

- Large interannual variability in egg densities and timing
- the climatology helps us to see a general spawning season pattern

Reproduction (lab data)

Brood Sizes from N. California Current

- 48 hour incubations
- ~800 broods
- Median = 128 eggs, range: 1-697

Reproduction (lab data)

- 2 examples from our long-term fecundity experiments
- Females of the same size, from the same location, kept under identical lab conditions
- High variability between females, but also for individual females

Reproduction (lab data)

Reproduction

Summary:

- •Duration of spawning season roughly follows upwelling season: ~late June − late September (100 days)
 - but high interannual variability \rightarrow 46 to 142 days in 1997-2008
- •Frequency of spawning (IBP):
 - ~5 days, but ranges from 2-70+
 - Very difficult to estimate from field data
 - Do not estimate using inverse proportion of purple females
- •Brood Size: Median = 128, range: 2 − 800 eggs
 - Do not attempt estimates from field densities
- •Fecundity: Using median values, 1 female could spawn 128 eggs, 20 times in the summer season to produce a total of 2,560 eggs!
- •Well within the ability of *E. pacifica* as shown by our long-term fecundity experiments

Final Thoughts

- When a study doesn't end how do you know when to stop?
- Seeing is believing...watching a living animal can go a long way in helping you to interpret your data
- Some uses of field data for *E. pacifica* have our blessings:
 - Cohort analysis, determination of the spawning season
- And some do not:
 - Estimations of brood size and frequency
- Knowing the potential rates allows you to be smarter about how far to push the field data
- E. pacifica variability is high in all ways and may be the key to thriving in a dynamic upwelling region
- For euphausiids, the utility of all rates (no matter how accurate) is still limited by inaccuracies in measurement of biomass
- Thankful to live in a time of plentiful individual based modelers