Mesozooplankton demands match carbon flux in the twilight zone

Sari LC Giering¹, R Sanders¹, RS Lampitt¹, C Marsay¹ & DJ Mayor²

¹ National Oceanography Centre, Southampton, UK.
² Oceanlab, University of Aberdeen, Aberdeenshire, UK

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Carbon Export

Particle flux

Mesozooplankton biomass profile (Steinberg et al. 2008)

Particle flux

Wilson et al. 2008

Particle flux

(Steinberg et al. 2008)

Wilson et al. 2008

Carbon demand

Acquired by feeding

Case study: Pacific

Bacterial & zooplankton carbon demands exceeded POC flux attenuation by far!

ALOHA: Station in subtropical Pacific Steinberg et al. 2008

Aim of this study

Does POC flux attenuation satisfy mesozooplankton carbon demands in the North Atlantic?

ARIES

Autosampling & Recording Instrumented Environmental Sampling System

- towed behind the ship
- 110 samples
- 55 discrete depth intervals

PELAGRA Neutrally buoyant sediment trap

Mesozooplankton carbon demands

- 1. Samples were size-fractioned
- 2. Identified
- 3. Enumerated
- 4. Analysed for dry weight
- 5. Carbon demand calculated for different groups

Size class	Copepods	Group
>2000	Genus level	Large copepods
1000-2000		
500-1000	Oithona. Oncaea,	Small copepods
350-500	Calanoid	
200-350		

Carbon demand calculations

POC flux (Analysed by Chris M Marsay)

- 1. PELAGRA deployment: 48 h
- 2. Particles were caught in PELAGRA sample cups containing 4% formalin
- 3. Aliquots were filtered onto pre-combusted GF/F filters, dried, and POC measured using an elemental analyser

Flux attenuation

POC flux

Attenuation between

50-600 m: 67 mg C m⁻² d⁻¹

50-200 m: 55 mg C m⁻² d⁻¹

200-600 m: 12 mg C m⁻² d⁻¹

Community composition

Station 1

Station 2

Mesozooplankton biomass St. 1 St. 2

200 400 Depth (m) 600

Carbon demand

St. 2

Can C demands be satisfied?

50-600 m

Mesozooplankton carbon demands between 50–600 m can be satisfied by the bulk POC flux.

- We estimated
 - Mesozooplankton C demand at 2 stations during day and night
 - POC flux attenuation using 5 PELAGRAs
- We found

 Mesozooplankton can live of bulk POC flux attenuation between 50 – 600 m !

How reliable are our estimates?

(1) PELAGRA

- All traps followed the same water mass
- Top trap estimates match 234Th and Marine Snow Catcher data

→ Fairly confident

How reliable are our estimates?

(2) Carbon Demands

- 1. Patchiness
- 2. Bacteria, microzooplankton, macrozooplankton, nekton???
- 3. Animals partly damaged or squeezed
 - \rightarrow Loss of biomass
- 4. Conversion of biomass into CD: many uncertainties

Underestimation

Flux attenuation

POC flux

Does depth matter?

50-200 m

200-600 m

Steinberg et al. 2008

This study

- High biomass of resident mesozooplankton at depths
- Cannot satisfy metabolic requirements by feeding between 200-600 m alone.
- But: System is balanced between 50-600 m!

50-600 m

Thanks! 🙂

Sari Giering