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« The biological pump »

Export to the Ocean’s interior of carbon fixed by photosynthesis in
the euphotic zone

Arctic zooplankton
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Central objective

to examine the relative role of two zooplankton size
classes in the attenuation of POC flux and In the

downward flux of respiratory carbon in the Amundsen
Gulf pelagic ecosystem.




Study area
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« 35 profiles of zooplankton biomass
and respiration in Amundsen Gulf




Surface

Multinet Hydrobios fitted with nine 200um nets CCGS Amundsen
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Vertical profiles of respiration

o Activity of the Electron-Transport System (ETS)

ETS assays following the protocol of
Bamstedt (2000).

Respiration rate (R) = ETS activity x (R/IETS)

e Determination of R/ETS ratios
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ATP synthase

Sealed chamber incubation for direct measurement

of respiration prior to ETS assay.

e Conversion from 0, consumption to CO, release

RQ = 0.75; for metabolism essentially based on lipids
RQ = 0.97; for metabolism mainly based on proteins

e Potential ingestion (I), using the equation of lkeda & Motoda

(1978):

| = 100R/(70-30) = 2.5R ; AE and GGE of 70 and 30%, respectively
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e Calanus spp. accounted for 36-83% of large zooplankton biomass
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200-1000 pm
Resp. = 3.627 (ETS) + 13.756 ; r* = 0.76
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Resp. = 3.187 (ETS) - 0.935 ; r* = 0.71
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| Small zooplankton

200-1000 pm

e N & O

Respiration rate
(log mg C m?d)
M

Specific respiration
(mg C mg DW d)
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Large zooplankton >1000 pm
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e Autumn

Zooplankton potential ingestion compared to
primary production in the surface 100 m layer
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e Spring-summer

| | Zooplankton potential ingestion compared to Zooplankton potential ingestion
| primary production in the surface 100 m layer and POC flux below 100 m depth
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Calanus spp. share of the bulk zooplankton respiration in winter at depth was
estimated pro rata their contribution to the biomass of large zooplankton.

Assumptions:

1. Calanus spp. do not feed at depth in winter
2. Their winter specific respiration rates were similar to other large zooplankton

Active respiratory flux and gravitational Active respiratory flux in 2007-2008 and
POC flux below 100 m depth in 2007- gravitational POC flux below 200 m depth
2008 (mean for 2004-2006)
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» Small zooplankton were the main POC consumers and recyclers in autumn
| when the bulk of large organisms were already at depth with a reduced
| metabolism.

| = Zooplankton were in place and physiologically ready to exploit the fresh

POC supplied by the 2008 precocious spring phytoplankton bloom.

* In spring-summer, large zooplankton were the main grazers of primary
|| production at the surface and the main interceptors of POC flux at depth.

[ = Respiratory losses of carbon brought from the surface by the Calanus
population overwintering in the deep layers were equivalent to POC annual
passive fluxes.




Conclusion

» The large and small zooplankton may be viewed as different functional
groups when considering their distinctive roles in the biogeochemical carbon
flux within arctic pelagic ecosystems.

| = Large zooplankton take the largest share of zooplankton metabolism in the
system but small zooplankton have a considerable impact on POC
attenuation in autumn and during the overwintering season.

» The Calanus spp. active respiratory fluxes can double the efficiency of the
biological pump of CO, to the deep water masses, as assessed by long-term
sediment traps .

= Arctic zooplankton are well prepared to cope with the high variability in the
timing of pelagic primary production.

= A shift toward smaller zooplankton, anticipated under climate warming,
should enhance recycling over carbon export to the deep ocean.
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