

Comparative time series analyses in the English Channel

Claudia Halsband-Lenk¹, Elvire Antajan²

¹Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK ²IFREMER, Laboratoire Environnement Ressources, BP 699 62200 Boulogne sur Mer, France

CHARM 3

- Funded by EU Interreg programme
- CHannel integrated Approach to marine Resource Management
- phases 1 & 2: multidisciplinary approach to marine living resource management
- assessment of key marine species and their habitats in the eastern Channel
- and develop management tools to predict human impacts
- Product: Channel Habitat Atlas (2009)
- Phase 3: western Channel & plankton added

Action 2.1: multimetric food web index

- inventory of planktonic taxa, based on historical data sets
 - IFREMER coastal network surveys/sea campaigns, Gravelines time series, PML time series, CPR data (SAHFOS)
- m phyto- and zooplankton phenologies
- timing of life cycles along longitudinal gradient(s)
- defining dominant, common and accessory phyto- and microzooplankton species
- Trophic relationships & food web index
- mapping functional groups of zooplankton

The CHARM area

Two long-term sampling stations

≈ Plymouth: L4

- Western Channel
- 50 m depth
- Estuary influence (rivers Tamar & Plym)
- Gateway to the Celtic Sea and North Atlantic

- Eastern Channel
- 7 m depth
- Harbour influence
- Gateway to the North Sea
- Entrance of a nuclear power plant (non-impact site)

What's available?

L4

- **Weather**
- ≈ SST
- Mutrients since 2000
- Chlorophyll
- make Phytoplankton composition
- **Zooplankton species**

- **Weather**
- ≈ SST
- Nutrients (some years)
- Chlorophyll **
- math Phytoplankton composition
- Zooplankton species

The data sets

- R-package developed by Damien Eloire
- Grey bars = years with missing data

SST

- Strong warming (Grav) since 1970's (shift in anomalies in 1988)

Chlorophyll

Gravelines

 \approx L4 = 2 peaks vs. Grav = 1 peak

Phytoplankton

L4

- □ Diatoms: season Grav > L4
- □ Dinos: L4 >> GRAV
- Phaeocystis blooms: negative trend in Grav, irregular at L4 since 2005

Acartia clausi

- Grav peaks earlier than L4
- m More abundant in cool years at L4

Temora longicornis

Variable: Temora longicornis Location: L4 station (Western Channel - UK) Period: 1988-2010 Individuals/m3 Number of samples: 1001 Min: 0 Max: 8562.14 Average: 273.95 SD: 567.85 Median: 67.4 Unit: Individuals/m3

- Spring peak in Grav vs bimodal seasonal cycle at L4
- Negative anomalies 2005-10 at L4 during warmest years, but not in Grav

DHR: dynamic harmonic regression

Estuarine, Coastal and Shelf Science 91 (2011) 411-422

Contents lists available at ScienceDirect

Estuarine, Coastal and Shelf Science

journal homepage: www.elsevier.com/locate/ecss

Exploring the long-term and interannual variability of biogeochemical variables in coastal areas by means of a data assimilation approach

Stefano Ciavatta a.b.*, Roberto Pastres C

*Physnoid Mattire Labrason, Prospect Place, Physnoid PL 130H, United Kingdom
*Paradoldemistura Centre for Chause Chauge, Consisted Venezia Kircele, V. da dela Libertà 12, 20275 Venezia, Italy
*Paparadold Palamoniand Avence, for Experised and Massacs, University Carl Factors of Winice, Dissochute 2117, 2027 Venezia, Italy
*Paparadold Palamoniand Avence, for Experised and Massacs, University Carl Factors of Winice, Dissochute 2117, 2027 Venezia, Italy

$$y_t = T_t + S_t + e_t$$

data = Trend + Seasonality + error

Today 14:30, S5-7198 "Long-term and interannual variability of zooplankton at a coastal station in the Western English Channel"

DHR: Acartia clausi

DHR: Temora longicornis

Conclusions:

- Stronger temperature oscillations at Gravelines
- Strong warming trend since 1970's
- 2 phyto blooms (L4) vs 1 (Grav)
- Wery different abundances of dinoflagellates (L4>>Grav) why?
- Strong *Phaeocystis* blooms (both) with a negative trend in recent years (absent at L4 in some years)
- Acartia peaks earlier in Grav (winter/spring) than at L4
- Temora peaks earlier in Grav and has a bimodal seasonal distribution at L4

Outlook:

- Analyse nutrient data and correlations with phytoplankton
- Add Pseudocalanus data
- Apply time series model to determine similarities in trend slopes
- Run statistics on model outputs to detect significant correlations
- Combine eastern and western data sets with CPR data across the Channel

Acknowledgements

European Regional Development Fund The European Union, investing in your future

Funds européen de développement régional L'union Européenne investit dans votre avenir

